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Healthcare: a problem of Healthcare: a problem of scalescale

Anticipated US GDP and NHE NHE breakdown
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Aim is to translate scalability of technology
into scalability of clinical responsiveness

• 60% is due to hospital/clinical visits

• 75%  ($1.3T) is due to management of chronic disease and conditions 

(chronic disease causes 70% of deaths)



Clinical inference: what does this signal mean?Clinical inference: what does this signal mean?

~7.5sec
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Electrical 
onset of seizure

Convulsions



Why is it hard? (I)Why is it hard? (I)

Signals from low -power chronic sensors are non-specific
Single-photon emission computed tomography (SPECT)
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[Suffczynski, Neuroscience’04]

Seizure 
onset

EEG



Why is it hard? (II)Why is it hard? (II)

Background 

Patient A EEG:

Expression of disease states is variable over patie nts & time

5

Background 
activity

[Gotman, EEG & Clinical
Neurophis.’81 ]

Seizure
Onset
(patient specific waveform)



Constructing and applying highConstructing and applying high--order modelsorder models

1) Efficient techniques for data analysis
• Utilize methods from the domain of supervised machine-learning

• Embed these in low-power platforms and devices

Enabling data-driven patient-monitoring networks th rough…
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2) Availability of physiological data
• Exploit patient databases from the healthcare domain

• Exploit data acquisition capability of the sensor network



Towards devices: seizure detection ICTowards devices: seizure detection IC

Supply voltage 1V
I-amp LNA power 3.5µW
I-amp input impedance >700MΩ

I-amp noise 
(input referred, 0.5Hz-100Hz)

1.3µVrms

I-amp electrode offset  
tolerance

>1V

I-amp CMRR >60dB
(Patient specific)
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Feature 
Extraction 
Processor

Inst. Amp.

ADC

2.5mm

2.
5m

m

I-amp CMRR >60dB
ADC resolution 12b
ADC energy per conversion 250pJ
ADC max. sampling rate 100kS/s

ADC INL/DNL
0.68/0.66LS

B

ADC SNDR 65dB
Digital energy per feature-vector 234nJ

Feature vector computation rate 0.5Hz

Total energy/feature-
vector per EEG channel 9µJ

[JSSC, April’10]



Impact of patientImpact of patient––specific modelingspecific modeling
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536 hrs of patient tests:

Patient-specific learning

No learning [Wilson’04] Latency:

• Specific: 6.77 ± 3.0 sec

• Non-sp.: 30.1 ±1 5 sec
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False alarms:

• Specific: 0.3 ± 0.7 /hr

• Non-sp.: 2.0 ± 5.3 /hr

Sensitivity:

• Specific: 0.93

• Non-sp.: 0.66

[Shoeb, EMBC’07]



Computational energy: ECG beat detection Computational energy: ECG beat detection 
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Classifier energy scales w/ model complexity

real pa�ent data → complex models
[DAC’11]



Expanding the standardsExpanding the standards
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www.continuaalliance.org

Telemetry

Patient data & models
Selected 

patient-specific 
data

Clinical experts
(centralized &

limited resources)



SummarySummary

Physiological expressions in low-power sensing modalities

Are non-specific and variable from patient-to-patient

Data-driven methods provided systematic approaches for 

constructing high-order models

11

constructing high-order models

Need:

Algorithms

(identify data instances

to present to experts) 

Platforms

(exploit algorithmic 

structure for low 

energy & flexibility) 

Networks

(selective utilization of 

clinical resources) 


