

1st Invitational Workshop on **Body Area Network Technology and Applications** Future Directions, Technologies, Standards and Applications June 19-20, 2011 Worcester Polytechnic Institute

BODY AREA NETWORKS and Wireless Medical Monitoring

Lessons Learned from Space Technology Development

1st Workshop on Body Area Network Technology and Applications 20 June, 2011

JOHN W. HINES Chief Technologist NASA-Ames Research Center 650-604-5538 John.w.hines@nasa.gov

NASA's Space Technology Program - Development Approach

NASA

NASA's Space Technology Program

STR • TABS NAEA TECHNOLOGY AREA BREAKDOWN STRUCTURE LAUNCH PROPULSION SYSTEMS 80 SCIENCE INSTRUMENTS. AO **OBSERVATORIES & SENSOR SYSTEMS A09** ENTRY, DESCENT & LANDING IN-SPACE PROPULSION **A02 TECHNOLOGIES** SYSTEMS A03 NANOTECHNOLOGY SPACE POWER & ENERGY STORAGE ROBOTICS, TELE-ROBOTICS & MODELING, SIMULATION, INFORMA-AO AUTONOMOUS SYSTEMS **TION TECHNOLOGY & PROCESSING** COMMUNICATION & NAVIGATION MATERIALS, STRUCTURES, MECHAN-A05 \mathbf{n} **ICAL SYSTEMS & MANUFACTURING** đ A06 HUMAN HEALTH, LIFE SUPPORT & GROUND & LAUNCH SYSTEMS HABITATION SYSTEMS PROCESSING HUMAN EXPLORATION DESTINA-4 THERMAL MANAGEMENT SYSTEMS AO -TION SYSTEMS d Л

NASA SPACE TECHNOLOGY ROAD MAP TECHNICAL AREA BREAKDOWN STRUCTURE

NASA-Ames Technology Elements

Definition - Development -- Infusion

Strategic Initiatives

- Transformational Small Spacecraft, Subsystems, and Mission Architectures
- Biological Technologies for Life Beyond Low Earth Orbit
- Low Cost, Off-the-Shelf Space Technologies

 (ex: PhoneSat --COTS Sp Tech Utilization
- GREEN Technologies (Technologies for Sustainability)
- Emerging Aeronautics Systems and Technologies
- Other Recommended Initiatives ?
 - Disaster/Homeland Security Monitoring, Mitigation, Training
 - Autonomous Laboratories on Planetary Surfaces ?
 - Hybrid Systems Modelling and Analysis
 - Advanced Information, Robotics, and Autonomous Systems
- Graduates
 - Synthetic Biology
 - PhoneSat

Smart Healthcare Management Systems

Developing systems to monitor the health and performance of NASA personnel and the functional status of the systems that support them

Physiological Monitoring of Astronauts

TriSponder quickly displays Health Status.

Biotelemeter *implanted in amimals*, or *ingested by/attached to astronauts senses Body Temperature*, *Blood Pressure*, *Blood pH*, *and Heart Rate*.

Physiological Signal Conditioner (PSC) acquires ECG, EEG, EMG, and EOG (and other bioparameters of interest.

Transponder relays biotelemeter signal to other monitoring devices.

Laptop monitors and analyzes Physiological Parameters.

Wireless Sensor Network for Health Monitoring

Fetal Biotelemetry System

Collaborative development efforts with UCSF Fetal Treatment Center

- Fetal Health
 Status Monitor
- pH/temp/HR
 Fetal
 Biotelemetry
 System
- pH/temp/ECG/pr essure Fetal Biotelemetry System

Distributed Environmental and Physiological Monitoring

Smart Healthcare Monitoring System

SHMS Interface Strategy

PSM: Personal Status Monitor PPM: Personal Physiological Monitor PEM: Personal Environmental Monitor PCM: Personal Clinical Monitor PSM: Personal Status Monitor PA: PreAmplifier S: Sensor BT: BlueTooth USB: Universal Systems Buss A: Actuator TM: Telemetry Transmitter Module FHSS: Freq. Hopping Spread Spectrum IR: InfraRed Mem: Memory TMRx: Telemetry Reveiver

LIFEGUARD

LifeGuard Monitoring System - Overview

Smart Healthcare Management Systems

Non-NASA Application of SHMS: Homeland Security and Defense

Test, Applications, and Integration

Testing, testing, and more testing

ARC Wireless Technology for Space Discovery and Systems Health Technical Area

WSN Shroud Sensor Module (SSM) Design Concept

Rbhaid Albha Rey A. 4/29/2011

Wireless Sensor Network Testbed

First Wireless LAN in Space – 1996 STS 76 / Mir 21

Desert Rats Field Simulations at Meteor Crater 2002

Mobile Agents at Mars Desert Research Station 2003

Warfighter Physiological Status Monitoring

"Tool Kit" to Understand Warfighter Physiology

CURRENT

SENSORS/ MEASUREMENTS

Headband EEG and Oximetry

Acoustic(Voice Stress and Content Analysis)

③ Dead Reckoning Module (3-Axis Accelerometer, GPS, Magnetometer, Altimeter)

4 EKG, EMG, and Thoracic Impedance Cardiography

5 Body Core and Skin Temperature

6 Near-Infrared (or Other) Technology* Tissue pH, Glucose, and Lactate

Wrist-Worn Actigraph

Boot-to-Boot Impedance*

Foot Contact (Weight/Locomotion)

Wireless

* Concept

FUTURE

Specifications for Minimal Sensor Set to Predict Warfighter Physiology

PHYSIOLOGICAL CONSEQUENCES OF CONCERN

Hypothermia Hyperthermia Hypoxia Metabolic Fatigue Vigilance Lapses Dehydration Psychological Stress Inadequate Restorative Sleep

> Desynchronization of Circadian Functions

Jolt, Blast, and Repeated Impact Exposure

Toxic Substance Exposure

8 9 Predict Significant Performance Degradation and Impending Casualty

NASA – DHS – First Responder PSM

CURRENT

SENSORS/ MEASUREMENTS

• Headband EEG and Oximetry

Acoustic (Voice Stress and Content Analysis)

③ Dead Reckoning Module (3-Axis Accelerometer, GPS, Magnetometer, Altimeter)

EKG, EMG, and Thoracic Impedance Cardiography

5 Body Core and Skin Temperature

Near-Infrared (or Other) Technology Tissue pH, Glucose, and Lactate

Wrist-Worn Actigraph
Boot-to-Boot Impedance*

Foot Contact (Weight/Locomotion)
 Wireless

FUTURE

* Concept

PHYSIOLO GICAL SEQUENCES OF CONCERN Hypothermia Hypoxia Metabolic Fatigue Vigilance Lapses Dehydration Psychological Stress nadequate Restorative Sleep Desynchronization of

Circadian Functions Jolt. Blast, and Repeated

Impact Exposure Toxic Substance Exposure Predict Significant Performance Degradation and Impending Casualty

EVA and IVA Physiological Monitoring

- Keep crew safe, healthy, and performing optimally
- Prevent, recognize, diagnose, and treat illness and injury
- ✤ IVA medical exams, exercise, research, fitness evaluations

EVA and IVA Physiological Monitoring Requirements

Saturation

TAB310.51-NEASUR GFM BLOGCLARAR ARGETE

Sit Panete	Unepsizadend Veilatin Psever Optisnas	Pseuzde Optisnas	Loa Gurfao Optionas
Bathingsatiowate (reliae)	Х	Х	Х
рр2О	Х	Х	
Oxygeunptionente(rate time)			Х
Situpres(setimbe)		Х	Х
pp@(Grin th)e		Х	Х
Con she(soa yexn)ge wa, ter ;reatim)e	х	Х	Х
Thread lionagodebaleXX creaxmb(cenalitated)			Х
Heatet(retarte)		Х	Х
Maeboliate(dcated)			Х
RatididaEposuData			Х

Notes:

Foitelopation, sreasu expande insgy a an idvid subbasis Forsiloga senometh prz Octoal subpresand i of the darad archolot requiper case n. Solveise

Requirements (Medical Operations)

Requirements (Research)

Monitoring ECG	Minimum of 2 independent channels for up to 48-hours		Holter Monitor/ECG	Minimum of 2 independent channels for up to 48-hours
Diagnostic ECG	12-lead for both 10-30 second "snapshot" mode, and 10-minute "full disclosure" mode		Diagnostic ECG	12-lead ECG for a minimum of 10 sequential minutes that employs 8 independent channels (using a standard 10- electrode
Heart Rate	0-250 beats per			configuration)
Respiratory Rate	0-150 breaths per minute		Cardiac Output	continuous cardiac output for up to 24 hours
Body Temperature	84.0 °F to 108.0 °F		Continuous Blood Pressure	Continuous Blood Pressure for up to 24 hours
Blood Pressure	Systolic 60-250 mmHg Diastolic 30-160 mmHg		Body Temperature	84.0 °F to 108.0 °F
Blood Oxygen	70-100%			

The Challenges

- Maximize the comfort, ease of use, reliability, and accuracy
- Minimize the equipment's mass, volume, power, and time for set-up and use

EVA HR Monitoring Requirements

Guiding Standard	ANSI EC-13 Cardiac Monitors, Heart Hate Meters
Requirement Name (#)	Performance Requirements
Accuracy (HR-01)	\leq +/- 10% or \leq +/- 5.0 bpm (whichever is greater)
Range (HR-02)	0-250 bpm
HR Calculation Methods (HR-03)	Beat-to-beat (Required) Averaged over 5, 15, or 60 seconds (Desired)
Beat-to-Beat Accuracy (HR-04)	24 millisecond
Desirement Name (#)	Performance Desirements
Sensor Type and Placement (HR-05)	Minimize skin preparations Reduce don/doff time Avoiding wet gel electrodes Achieve accuracy during dynamic operational environment

Market Survey/Lessons Learned

- Many systems rely on perspiration/moisture
- Nearby EMI can totally disrupt biomedical signals
- Not all systems have local display, ensure data is actually recording
- Have no buttons on the device that can be accidentally toggled
- The sensor is only the front end many other factors contribute to final signal quality
- Motion artifact remains one of key problems
- Wireless an option but many technical issues remain
- Some devices need attention to keeping them in place on the body
- Three considerations for sensor contact to skin
- Placement of sensors sometimes key
- Pick a financially viable company
- Get agreement on the definition of easy to don/doff

EHR

Future Space Medicine Health Care

- Portability and application of nano-technology
- Minimally/non-invasive, efficient diagnostic systems capable of detecting abnormal human function across all body systems
- Health care approaches capable of therapeutic intervention for a wide range of pathological and trauma scenarios

BAN / Wireless monitoring systems problems for acceptance

 hard to use don/doff attachment/motion artifact reliability communications Power-data interfaces data-info-decision ad-hoc network acceptance

• cost

•Sensing technologies and miniaturization is NOT the most critical issue

Conclusion

Continue to improve the human to biomedical sensor interface

and Applications

Thank You!

JOHN W. HINES 650-604-5538 John.w.hines@nasa.gov