

- Now that outdoor positioning is "completely solved", industry is turning its focus on pedestrian and indoor positioning and navigation
- There are lots of technologies being pitched as panaceas, but most industry experts believe that a hybrid of multiple location technologies will represent the answer to ubiquitous, available and accurate indoor positioning

Outline

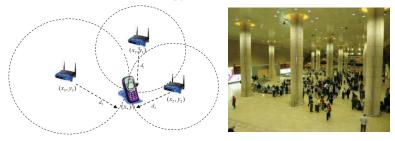
- Drivers for Indoor Positioning
- Indoor Beacon Technology & Challenges
- Sensor Technology & Challenges
- Hybrid Positioning
- Conclusion

Drivers for Indoor Positioning

• E911

- It is claimed that > 50% of cellular E911 calls occur indoors
- Potential FCC mandated levels of indoor testing towards compliance
- Target 50m or better accuracies

Indoor Location


- Single shot or low rate positions
- "Where am I" on indoor maps
- Location sensitive search / point of interest
- Target ~20m or better accuracies

Indoor Navigation

- High rate positions
- Navigation, routing
- Target ~5m or better accuracies
- Low Power

REDEFINING MOBILITY

Indoor Beacon Technology

- Indoor beacons are passive or active fixed devices situated indoors and observable at a mobile device. Examples:
 - Radio (WLAN, WPAN, UWB, RFID, Femto/Pico)
 - Optical/Laser
- Beacon location technology options
 - Proximity
 - RSSI/Finger Printing
 - AOA/Ranging/RTT/Trilateration/Etc.

EDEFINING MOBILITY

Challenges with Beacon Technology

- Cost
 - Public WiFi already out there; "free"
 - Other beacons deployment (device and installation) cost
- Power
 - RFID typically does not require power
 - Other beacons require power source; impacts installation cost and limits deployment locations

Provisioning

- Beacon Almanac cost associated with provisioning position information in beacons or maintaining beacon position almanac
- Mobile Device Impact
 - WiFi, BT high attach rate in phones, especially smartphones
 - Other beacon transceivers if not already in phone, costly to add
- Accuracy
 - Very challenging to meet indoor accuracy needs subject keeping within practical beacon and mobile device costs constraints

REDEFINING MOBILITY

Femto Cell Opportunities

- Femto cells provide WWAN coverage to indoor locations
 - Connected to broadband internet back haul
 - Must have known positions in network to facilitate E911 call routing
- With short range femto cells, proximity detection alone may provide a reasonable indoor position accuracy
 - Example: E911 call over a home femto; the known femto position can be used both to route the call to the appropriate PSAP and to provide to the PSAP for dispatch of emergency personnel
 - For femto radius of coverage < 50m, this will improve FCC compliance
- Pico/Micro cells are used for larger indoor coverage areas
 - Pico cell position can be used in combination with other indoor location technologies to augment the position solution or provide a fallback option

Sensors Relevant to Indoor Positioning

Barometric Pressure Sensor

- Measures atmospheric pressure
 - » Altitude / floor determination» Weather
- Accelerometer
 - Measures acceleration in a particular direction
 - » Linear and angular movement
 - » Tilt (Roll, Pitch) sensor
 - » Shock and free-fall sensing

Gyroscope

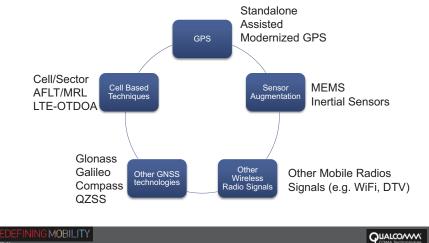
- Measures Coriolis effect
- » Heading Changes
- » Rotation

Magnetic Field Sensor

- Measures direction of magnetic field
 - » Compass
 - » Absolute Heading

REDEFINING MOBILITY

Inertial MEMS Sensors & Challenges


- MEMS sensors are becoming prevalent in smart phones today — Tilt sensors, etc.
- However, better accuracy in such sensors may be needed to enable acceptable accuracies in indoor navigation
- MEMS technology is on a good trajectory towards such accuracy improvements hand-in-hand with improvements in size, power and cost
- There is a great deal research in the area of Inertial MEMS sensor based Pedestrian Dead Reckoning (PDR) that can be leveraged to make indoor navigation a reality
- Some of the challenges in PDR are
 - Accuracy/Bias/Drift
 » Calibration
 - Power consumption

REDEFINING MOBILITY

Other Measurement Sources

- GNSS & WWAN (including femto/pico cells) may be available indoors and can help augment other indoor positioning technologies
- Hybrid is the key to indoor location

Hybrid Positioning

- Some form of beacon technology will be key to indoor location
 - GNSS and WWAN won't provide needed availability or accuracy
- Some beacon + IMU/MEMS solution will be key to indoor navigation
 - Practical cost beacon deployment won't be accurate enough
 - Sensors alone won't work for long periods of time
- Other positioning technologies (WWAN, GNSS, etc.) will help improve accuracy and availability of indoor positioning
- Hybrid is the key
- Managing power consumption will also be critical

 Hybrid technology selection must adhere to power constraints to manage an acceptable "energy per location fix"

Conclusion

- New indoor technologies will be required to meet accuracy and availability requirements for emerging indoor LBS applications (and possibly new E911 mandates)
 - A combination of beacon technology and sensors will be key components of the indoor solution with augmentation from other location technologies
 - To be deployed wide-scale, this technology must also have a practical deployment cost – both in the mobile device and in the network – and have acceptable power consumption
- LBS has already exploded in cellular devices for outdoor applications
 - There is no question that a highly available and accurate indoor location solution will be of significant value, enabling many new LBS applications

REDEFINING MOBILITY