

MOTOROLA Messaging, Information and Media Sector –

Radio Research Laboratory

From Standard WLAN's to Wireless ATM Technology for Multimedia Communications

The Second IEEE Workshop on Wireless Local Area Networks Worcester Polytechnic Institute, October 24-25, 1996

> Paul Odlyzko Motorola MIMS, Radio Research Lab 50 E. Commerce Drive Suite M1 Schaumburg, IL 60173 paul_odlyzko@wes.mot.com

Outline

- What is a "standard WLAN"?
- Performance goals and expectations
- Architectures and applications
 from LAN to Multimedia and Wireless ATM
- Market perspective
- Regulatory issues unlicensed spectrum in US and Europe
- Products and technology demonstrators proprietary solutions, standards initiatives and EC-sponsored projects
- HIPERLAN and 802.11
- Quality-of-Service concerns
- Propagation environment power, attenuation and multipath
- Wireless ATM in the NII/SUPERNet band
- Simple Asynchronous Multiple Access as etiquette and protocol

What is a "standard WLAN"?

Infrared - history and IrDA (Infrared Data Association), laser links outdoors

- ISM FCC Part 15 Spread spectrum 902-928; 2400-2483; 5725-5825
 - 1 watt, mandatory spreading
 - secondary use, must accept interference
 - Part 15.249 unrestricted for EIRP below .75 mW
 - "Garbage band" problems rules practically unenforceable
 - need for robustness, survival
- WinData duplex ISM Ethernet 2.4 GHz and 5.7 GHz, wire replacement concepts rather than mobility
- 900 MHz WaveLAN from NCR, Proxim, Xircom and others 2.4 GHz systems - proprietary as well as 802.11 1997?), advertised 2 Mbps for direct sequence or hopper or hybrid possible

What is a "standard WLAN"? (cont'd)

- "Narrow band" licensed and unlicensed
 - Motorola-Codex project, spectrum not allocated
 - Altair in 1990, wire replacement concepts rather than mobility,
 - Olivetti wireless LAN based on DECT
 - DECT branch formed in 1991 for wireless LAN leading to RES10, 5.150 GHz to 5.3 GHz, 17.1 to 17.3 GHz
- New unlicensed spectrum
 - WINForum for 2 GHz UPCS
 - WINForum for 5 GHz

NII/SuperNet

- mmWave Etiquette Group for 60 GHz

Performance goals and expectations

- Coexistence with wireline LANs interfacing with competition
- Ethernet 802.3
 - 25 Mbps ATM
 - 30 Mbps cable (asymmetric?)
 - 100 Mbps
 - Gigabit movement
- Sidelined wired LANs
- Data rate
 - ISM
 - narrowband
- Wireless ATM
 - RES10 talks about 50,000 ATM cells per second

Architectures and applications from LAN to Multimedia and Wireless ATM

- Packet radio, half-duplex (TDD),
- Hand-over and forwarding (HIPERLAN)
- Perceived cost of infrastructure
- Centralized control ("access point")
 Altair, IEEE 802.11 (BSS)
- Peer-to-peer
 - WaveLAN, HIPERLAN ("Type 1")
- Point-to-point, point-to-multipoint

Market perspective

- Hope for "horizontal"
 - Metricom (wide-area network)
- Limited "vertical" markets so far
 - computer maintenance (ARDIS really a WAN) ,
 - point of sale applications warehouses, fleet management
 - hence proprietary approaches are doing fine
- What limits commercial success so far? commonly advanced explanations:
 - price, range,
 - low speed,
 - limited functionality,
 - no "killer apps"

Market perspective - cont'd

- Conjectures on how the wireless LAN market will develop:
 - access to Internet
 - multimedia notebook computers
 - will PDAs take off?
 - returning motivation: cable replacement, this time for portables -Open Office
 - tetherless nomadicity rather than fully mobile multimegabit communications
- Expectations of the market:
 - plug-and-play for RF naive, misguided, ignorant or just oblivious users -
 - higher expectations in-building than outdoors
- Will there ever be the "year of the Wireless LAN"?
 - It will take a few years just as LAN networking

- World Radio Congress;
- Unlicensed spectrum in US and Europe;
- FCC and CEPT;
- coexistence with terrestrial microwave and satellite communications
- UPCS
 - for 1910-1930 one end needs to be tied until microwave users are relocated, hence suitable only for wireless PBX or such
 - 2390 same spectrum etiquette as 1910-1920
 - coexistence for non-interoperable systems
- 5 GHz first chance for world-wide market

MOTOROLA Messaging, Information and Media Sector –

Radio Research Laboratory

Products and technology demonstrators - proprietary solutions, standards initiatives

- "Mature" products:
 - 900 ISM proprietary systems
 - 2400 ISM proprietary systems
 - Proxim initiative (open air interface as an alternative to 802.11)
- Standards-oriented developments
- European projects:
 - LAURA pre-HIPERLAN test bed
 - HIPERION feasibility of HIPERLAN
 - Magic Wand Wireless ATM
 - ACTS
 - MEDIAN

HIPERLAN ETSI RES10, 5.15-5.3 GHz, 17.1-17.3 GHz

- Motivation: *faster is better*
- Process:
 - Transmission Techniques Group (TTG)
 - Control Techniques Group (CTG)
 - Consensus
- 5 channels in 5 GHz
 - 5176.468 MHz lowest center frequency
 - 23.5294 MHz separation
 - 10 ppm

MOTOROLA Messaging, Information and Media Sector —

Radio Research Laboratory

HIPERLAN

equipment classes

Table 28: Permissible combinations of transmitter and receiver classes

	Transmitter class A (+ 10 dBm)	Transmitter class B (+ 20 dBm)	Transmitter class C (+ 30 dBm)
Receiver class A (- 50 dBm)	Permissible	Not permissible	Not permissible
Receiver class B (- 60 dBm)	Permissible	Permissible	Not permissible
Receiver class C (- 70 dBm)	Permissible	Permissible	Permissible
NOTE: The figures in parentheses indicate the nominal transmitted power (EIRPEP)or receiver sensitivity associated with each class.			

HIPERLAN

- Data burst structure
 - High-bit-rate training sequence (450 bits GMSK at 23,529 4 Mbps)
 - Low-bit-rate header (FSK at 1.4706 Mbps or 1:16)
 - High-bit-rate data (GMSK)
 - 47 or fewer blocks of 496 (416 net) bits per packet
- CSMA Non-Pre-Emptive Priority Multiple Access (NPMA)
 - immediate access if sensed idle for 1700 bit times
 - channel access resolution otherwise
 - » prioritization
 - » elimination
 - » yield

HIPERLAN

- Quality-of-Service provisions
 - "Best effort" basis
 - Priority
 - Packet lifetime
- Uni-cast and multi-cast
- Path discovery and forwarding
- Power saving provisions
 - scheduling for *p*-saver and *p*-supporter
 - LBR header

MOTOROLA Messaging, Information and Media Sector -

- Radio Research Laboratory

IEEE 802.11 standard for 2400 to 2483.5 MHz (2471 to 2497 in Japan)

- Physical layer
 - Frequency hopper (FH) 79 hopping frequencies (23 in Japan)
 - Direct sequence (DS)
- processing gain of 11

- Infrared (IR)
- SCMA/CA channel access
- Hopping pattern selection
 - sets of 26 hopping patterns
- Spreading signal
 - 11 center frequencies defined (US)

IEEE 802.11

- Power management
- Narrowband interferers
- Microwave ovens
- Quality-of-Service concept
 - Bandwidth guarantee
 - Data integrity
 - Delay
 - Delay variance
- Quality-of-Service provisions
 - Time-bounded services
 - Hidden-node effect mitigation

Quality-of-Service Concerns

- Data integrity
 - ARQ
 - FEC
- Time-bounded services
 - Real-time voice
 - Video
 - Audio
- Latency
- Latency variance
- Will "Standard WLAN's" work?
 - Reservations re throughput with short packets
 - Long packet increase "jitter"

Propagation environment power, attenuation and multipath

- Inverse relationship between distance and data rate
- Power constraints
- Antenna gain constraints- definitions
- Models of attenuation indoors
 - exponent 3 to 4
 - free space and walls
- Optical analogy increasingly applicable with higher frequencies

WATM for NII/SUPERNet 5.100-5.350 and 5.725-5.875 GHz

- Proposals from WINForum and Apple not restrictive
- Notice of Proposed Rule Making FCC 96-193 opens dialogue
- Spectrum sharing etiquette expectations:
 - enabling high QoS systems
 - flexibility for multi-media communications
- Need for alternatives to support Wireless ATM
 - ATM cell: *the byte of the 90's*
 - individual ATM cells
 - trains of ATM cells

- A radio channel is most efficiently shared among users with CBR requirements.
- Over any sufficiently short period of time (*Tc*), any bandwidth requirement is CBR.
- The practical lower limit to *Tc* is the amount of time and overhead required to re-acquire bandwidth.
- Statistical multiplexing, within a multi-service device, increases *Tc*.
- Multi-Media devices will require protocols that support both infrastructure based (centrally controlled) and non-infrastructure based (ad-hoc) networks.

- Provide a simple bandwidth setup mechanism
- Support for devices with widely varying bit rates
- Reduce the number of "collisions"
- Support the development of both ad-hoc and centrally controlled protocols.

MOTOROLA Messaging, Information and Media Sector — Radio Research Laboratory Simple Asynchronous Multiple Access (SAMA)

- There is no "bandwidth set up" phase.
- Every unit observes the same frame size.
- Each transmission burst is divided into cells of the same time duration.

Probing for Channel Access

(M) MOTOROLA Messaging, Information and Media Sector -

Radio Research Laboratory

SAMA Ad-Hoc Networking

M MOTOROLA Messaging, Information and Media Sector ——

Radio Research Laboratory

SAMA Centrally Controlled Network

(M) MOTOROLA Messaging, Information and Media Sector -

Radio Research Laboratory

RF Fading Environment

MOTOROLA Messaging, Information and Media Sector —

Radio Research Laboratory

Fading Patterns **Omni vs. Directional Antenna**

MOTOROLA Messaging, Information and Media Sector –

Radio Research Laboratory

Omni Antenna Received Signal Strength

M MOTOROLA Messaging, Information and Media Sector –

Radio Research Laboratory

