

A Perspective on Ubiquitous Communications: the MoCCA Project

Anton T. Dahbura

Digital Equipment Corp.

Cambridge Research Laboratory

Outline

• Introduction and Background

- The MoCCA Vision
- Technology Barriers and Research Opportunities
- Conclusions and Open Issues

Why Has the Vision not Flown?

- devices have not displaced other carried items
- lack of clear vertical market focus
- low-performance CPUs, small memories, poor battery life
- inadequate input such as handwriting recognition
- disappointing ease-of-use factors
- inadequate display and keyboard sizes
- lack of seamless and ubiquitous communications
- cost/value!

Device Trends

The industry has entered a period of transition and growing user acceptance.

Relative successes in the consumer market:

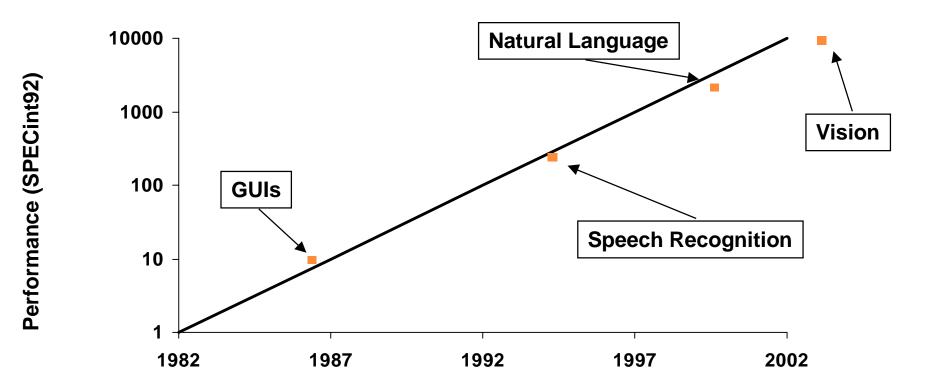
- Newton MessagePad 130
- Sharp Zaurus
- Hewlett-Packard OmniGo 100
- Casio Z-7000
- U.S. Robotics Pilot
- Psion 3A

Mainly organizers with limited communications/synchronization means.

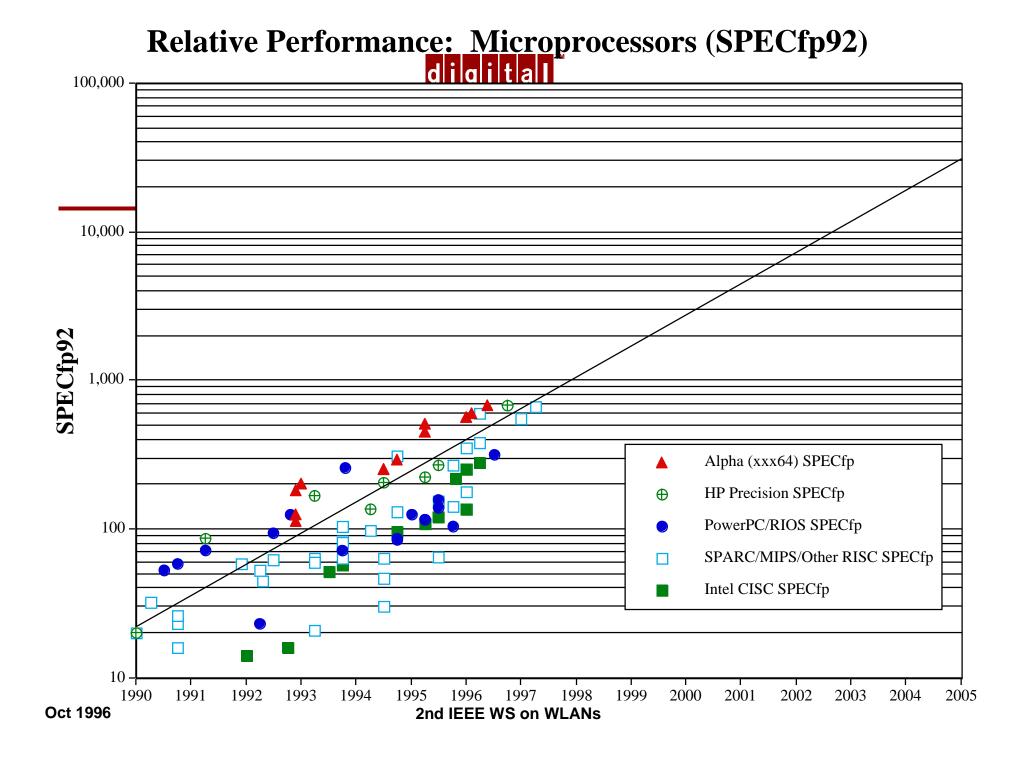
Vertical Markets Trends

- Some progress in market for mobile devices for vertical applications (inventory control, health care):
- Telxon
- Badger
- Fujitsu (pen-based, Windows 95)
- Symbol
- Norand

These and other devices are exposing many to the technology.


Microprocessor Technology Trends

Features size (micron)							
0.5	0.35	0.25		0.18	0.12	0.10	
Gates/chip							
300K	800K	2M		5M	10M	20M	
			DRAM				
16M	64M	256M		1G	4G	16G	
SRAM							
4M	16M	64M		256M	1G	4G	
			Mips				
100	400	1000		2500	5000	10000	
			Disks				
2GB	8GB	25GB		75GB	200GB	500GB	
			LAN Bandwidth	า			
100	1000			10000?			
				▲			
1992	1995	1998		2001	2004	2007	
Source: Semico	onductor Industry	y Association	Semiconductor T	echnology Work	shops Conclusio	ons March, 1993	

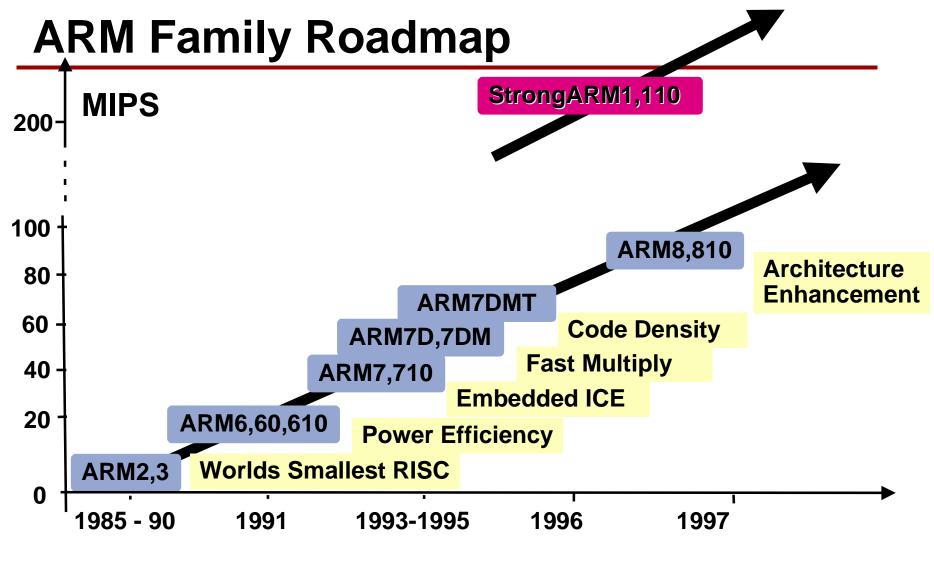

10/25/96 Oct 1996

d i g i t a I

Microprocessors Technology Trends (Cont.)

10/25/96 Oct 1996

digital Digital-ARM Partnership


DS has negotiated an architecture license from ARM Ltd.

- unique position (others are manufacturing licensees only)
- DS will develop and manufacture a series of standard products (SPs) and application specific SPs (ASSPs) based on the StrongARM core technology
 - Standard Products are general purpose devices
 - ASSPs are targeted at specific markets and applications

DS will develop a family of ARM compliant cores (the StrongARM family) which will be made available to ARM Ltd. for sub-license to their manufacturing licensees

> cores are enabling technology for ASSPs and CSSPs (customer specific SPs), from other ARM licensees

Oct 1996

StrongARM Target Market Segments

Smart Handheld Devices

- PDAs, Electronic Organizers,
- Digital Cameras, Smart Phones

Interactive Digital Media

- Digital Set-top devices, Interactive TV, Video Game Players

Internet Appliances

- Net Browsers, Intranet Devices

Embedded Control

- Internetworking: Routers, Bridges, LAN Switches
- Office Automation: Printers, Scanners, Copiers, etc.
- Telecommunication: PBX, Cellular Base Stations
- Storage Peripherals: Drive Controllers, RAID Controllers
- PC Add-Ins: Intelligent I/O Cards, LAN / WAN

SA-110 Details Process Technology

Supply voltage

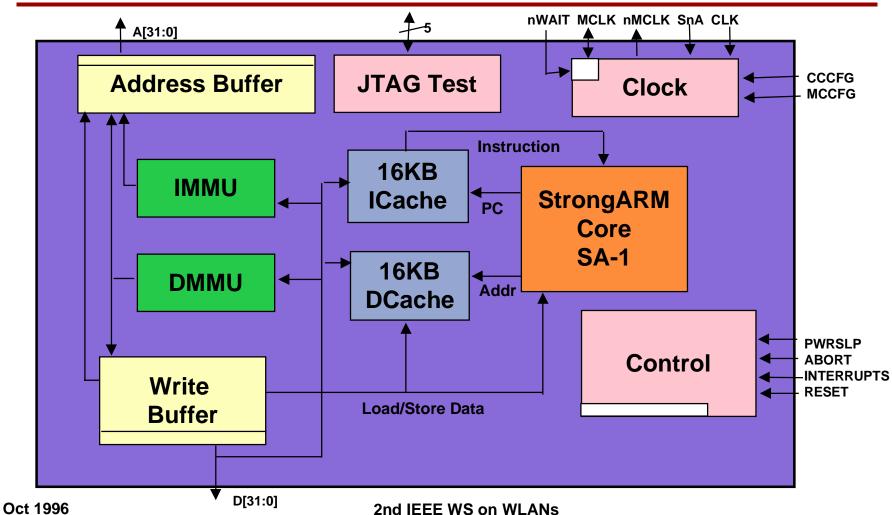
Frequency & Power

Power-down Modes

Package

Current Status

Volume


Oct 1996

d i g i t a l[™]

0.35 um, 3LM CMOS Core voltage 1.65 - 2.0 Volts I/O voltage 3.3 Volts < 900 mW @ 200 MHz @ 2.00-V < 450 mW @ 160 MHz @ 1.65-V < 300 mW @ 100 MHz @ 1.65-V - Normal Mode (<300mW@100MHz) - Idle Mode (20mW Average) - Sleep Mode (50uA Average) **144 TQFP** Samples at key customers now Q3 1996 2nd IEEE WS on WLANs

SA-110 Block Diagram

Establishing New Benchmarks in the Smart Handheld Market

	<u>SA-110 / 100</u>	<u>SA-110 / 160</u>		
Frequency	10 <mark>0 Mhz</mark>	160 Mhz	Best performance in SHH market	
Performance (Dhrystone 2.1 MIPS)	115	185		
Power	< 300 mW	< 45 <mark>0 mW</mark>	Leader in	
MIPS / Watt	383	411	power-efficiency	
Price (10k unit volumes)	\$ 29	\$ 49	Leader in price-performance	
MIPS / \$	4.0	3.8		

Software Systems Trends

Contenders for next-generation mobile device drivers:

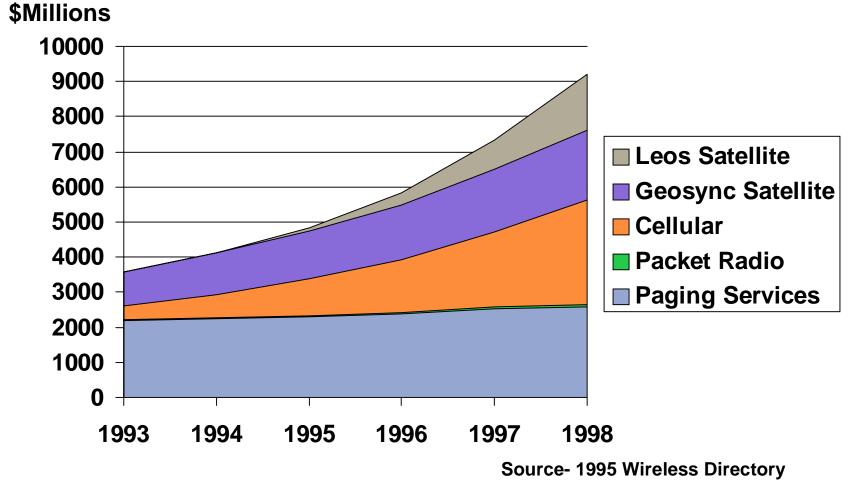
- Microsoft Windows CE (Compaq, Casio)
- JavaOS (Mitsubishi, Motorola, Nokia)
- General Magic's Magic Cap (?)
- Geowork's GEOS

These operating systems are also being considered for set-top boxes and Internet appliances.

Communications Infrastructure Trends

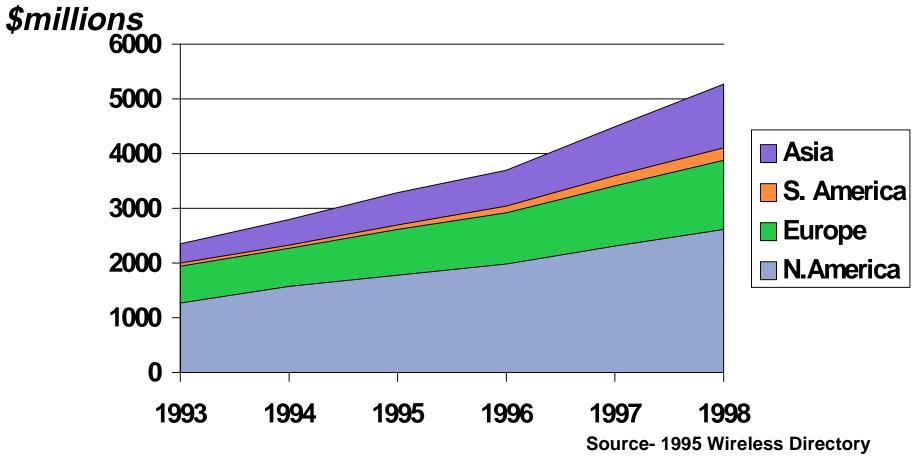
- Next-generation wide-area technology in the U.S. evolving towards PCS in spite of technological confusion;
- GSM will continue to dominate in Europe and other overseas markets;
- CDPD, packet radio (RAM Mobile, ARDIS), one- and two-way paging, will continue to find niche markets;
- emerging: wireless cable, ESMR, satellite, television
- wireless LANs will continue to grow; residential?

Market Projections

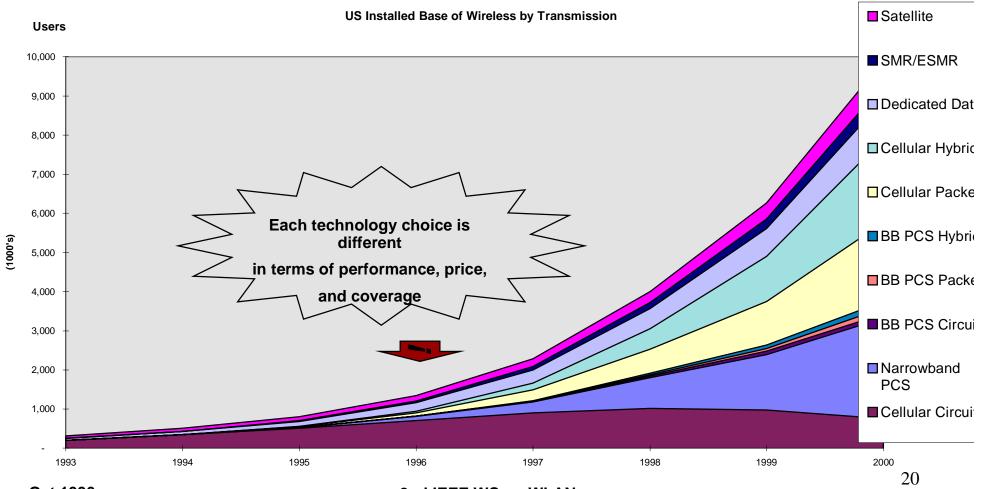

The installed base of wireless data subscribers in the U.S. is expected to grow from 500,000 in 1994 to nearly 10M in 2000.

Driving factors:

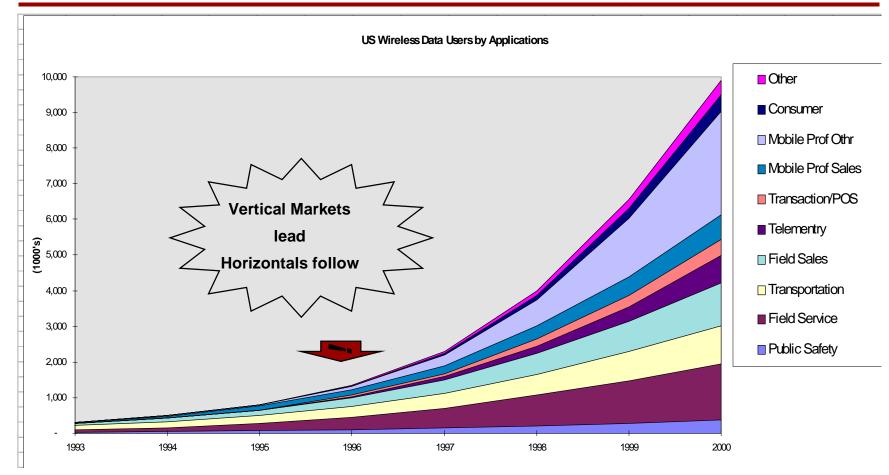
- move towards the untethered, mobile workforce;
- gradual build-out of the wireless infrastructure;
- deregulation and spectrum auctions;
- emergence of end-user client-server business applications and middleware.



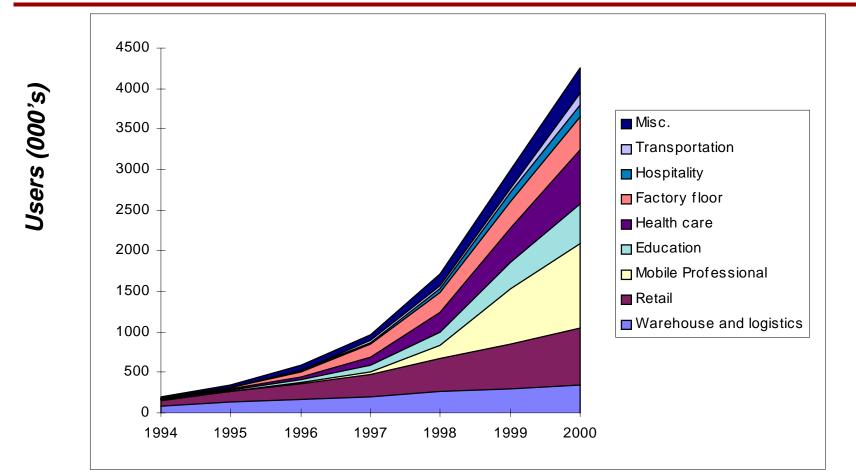
Global Wireless Data Networks Revenues


d i g i t a I

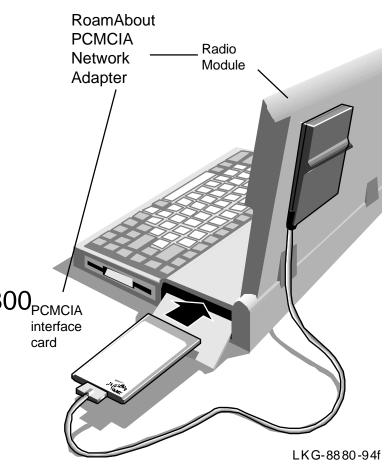
Worldwide Wireless Infrastructure Forecast


US Mobile-Wireless Data: Technology Trends

Oct 1996



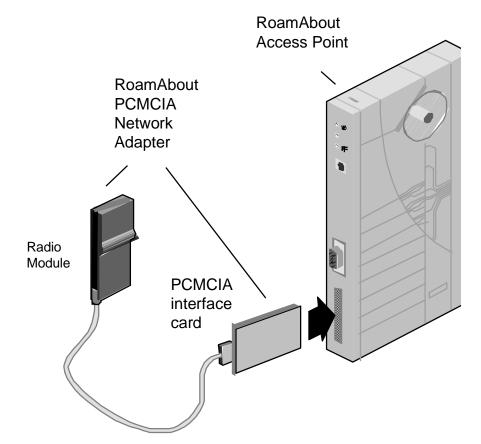
US Mobile-Wireless Data: Industry Trends



US Wireless LAN Market Trends

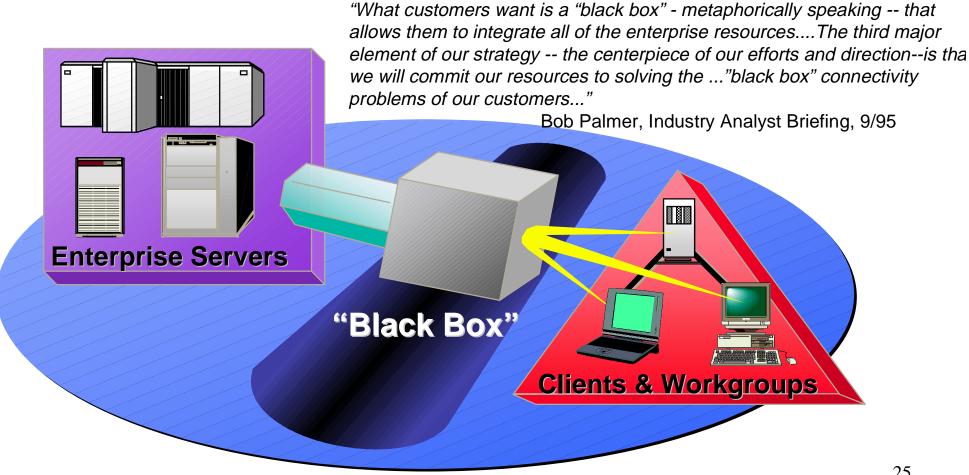
RoamAbout PC Cards for Portable Devices

- High performance, credit card sized, wireless modems and attached radio modules
- Available in three variations:
 - * RoamAbout 2.4 GHz frequency hopping (FH)
 - * RoamAbout 2.4 GHz direct sequence (DS)
 - * RoamAbout 915 MHz direct sequence (DS)*
- Uses inherently secure spread-spectrum RF
- No FCC license required
- Coverage up to 650 ft for 2.4 GHz MHz devices, 800_{PCMCIA}
 ft for 915MHz devices
- Drivers for any PC network operating system using ODI or NDIS network interfaces
- Gives wireless users access to wired Ethernet networks via RoamAbout Access Point Oct 1996
 2nd IEEE WS on WLANs

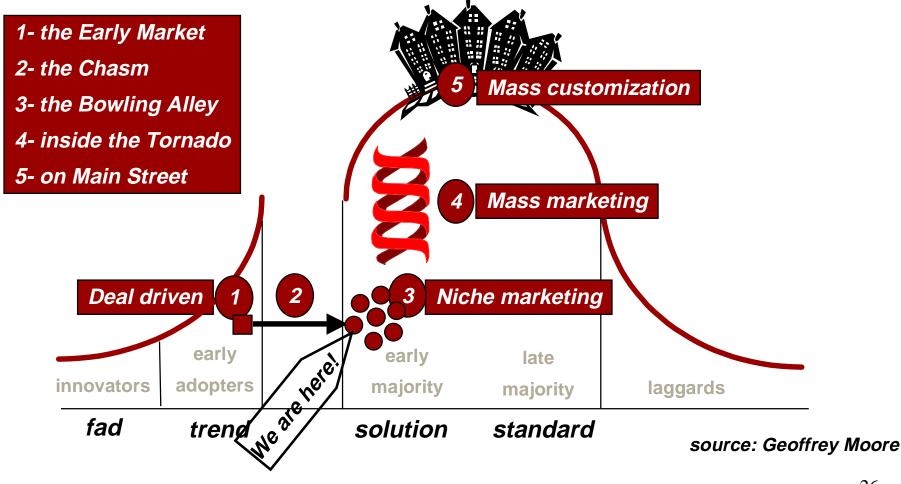

d i g i t a I

RoamAbout Access Point

--- the most robust, reliable and highest-performing wireless bridge in the Industry


A superior, <u>full-featured</u> wireless bridge

- Multiple wireless technologies (direct sequence or frequency hopping)
- Multiple frequency bands (2.4 GHz or 915 MHz)
- In-building "cell-to-cell" roaming
- Point-to-point diagnostics
- Software upgrade capabilities
- Standard UTP and ThinWire connections
- Network management via SNMP or tools such as HUBwatch
- Local console management port



The Connectivity Chasm

From an Early Market to Main Street

Outline

Introduction and Background

The MoCCA Vision

- Technology Barriers and Research Opportunities
- Conclusions and Open Issues

The MoCCA Vision

Harness a powerful, wearable *communications* processor to high-speed voice and data networks for distinct vertical markets.

Functions:

- find and connect the user to one or more team members or customers via voice and video;
- provide voice- or tactile-based mailbox management (voice mail, e-mail, FAX, etc.);
- handle info./data queries to remote private/public databases;

ocesamanage appointment books action-item list, etc.

Product Characteristics

- Modularity and compatibility:
 - -wireless earpiece/microphone
 - -wireless and/or wireline docking to PC
 - –compatibility with industry-standard software
 - **–PCMCIA-like configuration management**
- Displace cell phone, pager, PDA devices
- Network agility among CDPD, CSC, WLAN, etc.;
- As intuitive to learn and use as a cellular phone (?);
- Non-tactile input such as voice.

Product Characteristics (Cont.)

- Physical characteristics:
 - -wearable
 - -weigh less than 16 ounces
 - –normal battery lifecycle of 7 days minimum with overnight or continuous recharge
- The device should be fashionable and practical enough to encourage usage.

Program Overview

The program will be driven by blending

real vertical market needs

with

soon-to-market technological innovation

Rapid-prototyping, scenario-based project philosophy, with Carnegie Mellon University as the enabler.

Oct 1996

digital

The Cambridge Research Laboratory (CRL)

- Digital's primary U.S. East Coast research site
- Iocated near MIT and Harvard
- main focus: applications technology
 - -speech and speaker recognition
 - -video coding
 - -conversational systems
 - –computer vision
 - -distributed systems and scalable computing
 - -Internet applications

Program Operating Model

- Three facets:
 - -applied research
 - -system prototyping
 - -business development
- Core research group at CRL to advance technology and pursue specific opportunities;
- Advanced development team will form the nucleus of commercialization teams;
- One technical leader and one business leader.

Outline

- Introduction and Background
- The MoCCA Vision
- Technology Barriers and Research Opportunities
- Conclusions and Open Issues

d i g i t a I

Developments That Make This Possible

- ubiquity of wireless technology from WLAN to satellite-based;
- emergence of low-power, high-performance RISC microprocessors; storage devices, DSPs, etc.;
- innovations in display technology for portability and wearability;
- advent of WWW, popularity of corporate intranets;
- first wave trials and errors of mobile devices.

Mobile Computing Barrier Areas

- Human Interface
 - -display
 - -input means
- Power/Battery/Display Issues
- Performance (for speech, video)
- Communications Infrastructure
- Form Factor/ Heat Dissipation
- Applications

Technology Barriers

- Bandwidth, capacity, reliability, latency, coverage, and cost of wide-area networks
 - -protocols for handling data transfers efficiently
 - –caching strategies
 - -security issues
 - -connectivity management in overlay networks
 - -Very-Local Area Networks (BodyLAN) and mobile WLANs
 - -ad-hoc networking
 - -incorporation of video
- Oct 1996 new WAN media 2nd IEEE WS on WLANs

Technology Barriers (Cont.)

- Input limitations for mobile/wearable devices
 - -speech capture, recognition, understanding
 - speaker identification and verification
 - -handwriting capture and recognition
 - real-time digital voice multicasting
 - -video
- Architecture
 - hardware/software architectures for mobile systems
 - -OS design (?)
 - compilers for low-power devices

Technology Barriers (Cont.)

Human-computer interaction

- –new techniques for mobile I/O: gesture based, augmented-reality displays
- System design and packaging

 form factors for mobile systems (ID group)
 wireless headmounted I/O, including video capture
- Applications and user interfaces

Outline

- Introduction and Background
- The MoCCA Vision
- Technology Barriers and Research Opportunities

• Conclusions and Open Issues

Digital Equipment Corporation © 1996