# IEEE 802.11 Wireless LAN draft Standard

Keith B. Amundsen
Wireless Solutions
508-470-9483
keith\_b\_amundsen@raytheon.com
October 24, 1996
Worcester Polytechnic Institute

### Introduction

- IEEE 802.11 Draft 5.0 is a draft standard for Wireless Local Area Network (WLAN) communication.
- This tutorial is intended to describe the relationship between 802.11 and other LANs, and to describe some of the details of its operation.
- It is assumed that the audience is familiar with serial data communications, the use of LANs and has some knowledge of radios.

### Agenda

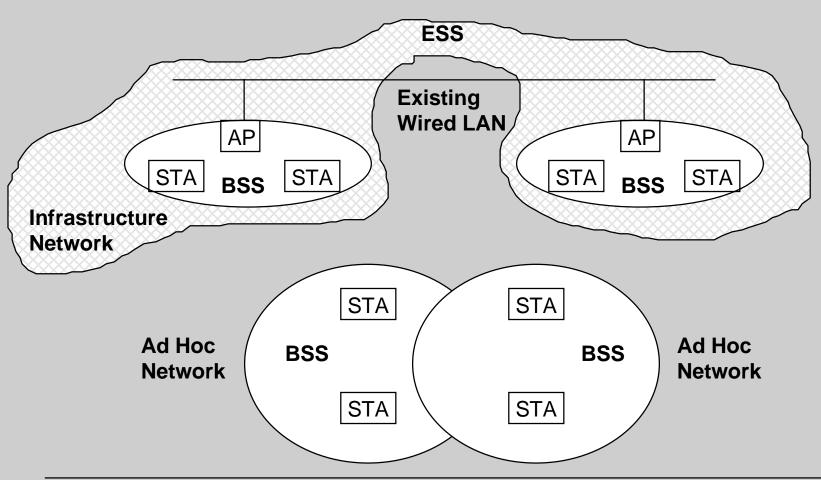
- Glossary of 802.11 Wireless Terms
- Overview
- 802.11 Media Access Control (MAC)
- Frequency Hopping and Direct Sequence Spread Spectrum Techniques
- 802.11 Physical Layer (PHY)
- Security
- Performance
- Inter Access Point Protocol
- Implementation Support
- Raytheon Implementation

### **Glossary of 802.11 Wireless Terms**

- Station (STA): A computer or device with a wireless network interface.
- Access Point (AP): Device used to bridge the wireless-wired boundary, or to increase distance as a wireless packet repeater.
- Ad Hoc Network: A temporary one made up of stations in mutual range.
- Infrastructure Network: One with one or more Access Points.
- Channel: A radio frequency band, or Infrared, used for shared communication.
- Basic Service Set (BSS): A set of stations communicating wirelessly on the same channel in the same area, Ad Hoc or Infrastructure.
- Extended Service Set (ESS): A set BSSs and wired LANs with Access Points that appear as a single logical BSS.

### Glossary of 802.11 Wireless Terms, cont.

- BSSID & ESSID: Data fields identifying a stations BSS & ESS.
- Clear Channel Assessment (CCA): A station function used to determine when it is OK to transmit.
- Association: A function that maps a station to an Access Point.
- MAC Service Data Unit (MSDU): Data Frame passed between user & MAC.
- MAC Protocol Data Unit (MPDU): Data Frame passed between MAC & PHY.
- PLCP Packet (PLCP\_PDU): Data Packet passed from PHY to PHY over the Wireless Medium.


### Overview, IEEE 802, and 802.11 Working Group

- IEEE Project 802 charter:
  - Local & Metropolitan Area Networks
  - 1Mb/s to 100Mb/s and higher
  - 2 lower layers of 7 Layer OSI Reference Model
- IEEE 802.11 Working Group scope:
  - Wireless connectivity for fixed, portable and moving stations within a limited area
  - Appear to higher layers (LLC) the same as existing 802 standards
    - Transparent support of mobility (mobility across router ports is being address by a higher layer committee)

### **Overview, IEEE 802.11 Committee**

- Committee formed in 1990
  - Wide attendance
- Multiple Physical Layers
  - Frequency Hopping Spread Spectrum
  - Direct Sequence Spread Spectrum
  - Infrared
- 2.4GHz Industrial, Scientific & Medical shared unlicensed band
  - 2.4 to 2.4835GHz with FCC transmitted power limits
- 2Mb/s & 1Mb/s data transfer
- 50 to 200 feet radius wireless coverage
- Draft 5.0 Letter Ballot passed and forwarded to Sponsor Ballot
  - Published Standard anticipated 1997
- Next 802.11 November 11-14, Vancouver, BC
  - Chairman Victor Hayes, v.hayes@ieee.org

# Overview, 802.11 Architecture



Microelectronics

**Raytheon** Electronics

### Overview, Wired vs. Wireless LANs

- 802.3 (Ethernet) uses CSMA/CD, Carrier Sense Multiple Access with 100% Collision Detect for reliable data transfer
- 802.11 has CSMA/CA (Collision Avoidance)
  - Large differences in signal strengths
  - Collisions can only be inferred afterward
    - Transmitters fail to get a response
    - Receivers see corrupted data through a CRC error

### **802.11 Media Access Control**

- Carrier Sense: Listen before talking
- Handshaking to infer collisions
  - DATA-ACK packets
- Collision Avoidance
  - RTS-CTS-DATA-ACK to request the medium
  - Duration information in each packet
  - Random Backoff after collision is determined
  - Net Allocation Vector (NAV) to reserve bandwidth
  - Hidden Nodes use CTS duration information

### 802.11 Media Access Control, cont.

- Fragmentation
  - Bit Error Rate (BER) goes up with distance and decreases the probability of successfully transmitting long frames
  - MSDUs given to MAC can be broken up into smaller MPDUs given to PHY, each with a sequence number for reassembly
    - Can increase range by allowing operation at higher BER
    - Lessens the impact of collisions
      - Trade overhead for overhead of RTS-CTS
      - Less impact from Hidden Nodes

### **802.11 Media Access Control, cont**

- Beacons used convey network parameters such as hop sequence
- Probe Requests and Responses used to join a network
- Power Savings Mode
  - Frames stored at Access Point or Stations for sleeping Stations
  - Traffic Indication Map (TIM) in Frames alerts awaking Stations

# Frequency Hopping and Direct Sequence Spread Spectrum Techniques

- Spread Spectrum used to avoid interference from licensed and other non-licensed users, and from noise, e.g., microwave ovens
- Frequency Hopping (FHSS)
  - Using one of 78 hop sequences, hop to a new 1MHz channel
     (out of the total of 79 channels) at least every 400milliseconds
    - Requires hop acquisition and synchronization
    - Hops away from interference
- Direct Sequence (DSSS)
  - Using one of 11 overlapping channels, multiply the data by an
     11-bit number to spread the 1M-symbol/sec data over 11MHz
    - Requires RF linearity over 11MHz
    - Spreading yields processing gain at receiver
    - Less immune to interference

### 802.11 Physical Layer

- Preamble Sync, 16-bit Start Frame Delimiter, PLCP Header including 16-bit Header CRC, MPDU, 32-bit CRC
- FHSS
  - 2 & 4GFSK
  - Data Whitening for Bias Suppression
    - 32/33 bit stuffing and block inversion
    - 7-bit LFSR scrambler
  - 80-bit Preamble Sync pattern
  - 32-bit Header
- DSSS
  - DBPSK & DQPSK
  - Data Scrambling using 8-bit LFSR
  - 128-bit Preamble Sync pattern
  - 48-bit Header

### 802.11 Physical Layer, cont.

- Antenna Diversity
  - Multipath fading a signal can inhibit reception
  - Multiple antennas can significantly minimize
  - Spacial Separation of Orthogonality
  - Choose Antenna during Preamble Sync pattern
    - Presence of Preamble Sync pattern
    - Presence of energy
      - RSSI Received Signal Strength Indication
    - Combination of both
- Clear Channel Assessment
  - Require reliable indication that channel is in use to defer transmission
  - Use same mechanisms as for Antenna Diversity
  - Use NAV information

### **Security**

- Authentication: A function that determines whether a Station is allowed to participate in network communication
  - Open System (null authentication) & Shared Key
    - WEP Wired Equivalent Privacy
      - Encryption of data
- ESSID offers casual separation of traffic

# Performance, Theoretical Maximum Throughput

- Throughput numbers in Mbits/sec:
  - Assumes 100ms beacon interval, RTS, CTS used, no collision
  - Slide courtesy of Matt Fischer, AMD

|                          | 1 Mbit/sec |                        | 2 Mbit/sec |                        |
|--------------------------|------------|------------------------|------------|------------------------|
| MSDU size<br>(bytes)     | DS         | FH (400ms<br>hop time) | DS         | FH (400ms<br>hop time) |
| 128                      | 0.364      | 0.364                  | 0.517      | 0.474                  |
| 512                      | 0.694      | 0.679                  | 1.163      | 1.088                  |
| 512<br>(frag size = 128) | 0.503      | 0.512                  | 0.781      | 0.759                  |
| 2304                     | 0.906      | 0.860                  | 1.720      | 1.624                  |

### **Inter Access Point Protocol**

- Not covered in draft standard
- Aironet & Lucent presented to 802.11 in July
  - Desired for secure environments
  - Desired for wireless infrastructure Distribution Systems that have no wired backbone
- Full discussion at 802.11 in November

# **Implementation Support**

- Advanced Micro Devices Am79C930 PCnet<sup>™</sup>-Mobile Controller
- OKI Semiconductor MSM7712 Wireless LAN Controller
- Raytheon GaAs RF MMICs

### AMD Am79C930 PCnet<sup>™</sup>-Mobile

- MAC Soft -> 80188 based architecture
- IEEE 802.11 MAC Firmware provided by AMD
- PHY independent
  - Programmable interface supports all PHY types
- Device Driver software available
  - NDIS3, NDIS2, ODI
- 144 pin TQFP package
- PCMCIA & ISA Plug & Play interfaces
- 5 & 3 volt functionality
- 1 & 2 Mbit/sec data rates, with dynamic rate switching capability
- Evaluation software & HW available
- Cyrus Namazi: 408 749 3415

### **OKI MSM7712 Wireless LAN Controller**

- Support for IEEE 802.11 draft standards
- Suitable for low-cost stations and access points
- PCMCIA compliant (v2.1) interface supporting 16-bit transfers
- On-chip radio modem for high-throughput data transfers
- Interface to radio providing antenna select, power control, and synthesizer programming
- Processor interface support for 80C86, 80C186, V33 & V53A
- Multi-port memory control for local simplified shared memory
- EEPROM interface to download configuration data and provide non-volatile card parameter storage
- Low-power mode for low power battery applications
- 5V external and 3.3V core operation
- 144-pin LQFP suitable for PCMCIA Type II cards
- Scott Gardner: 408-737-6357

# Raytheon GaAs RF MMICs

- RMCS2410-10
  - 2.4GHz Upconverter / Downconverter
  - 28-pin flat pack
- RMMS2410-10
  - 2.4GHz Power Amplifier
  - 2.4GHz Low Noise Amplifier
  - 28-pin flat pack

### **Raytheon Implementation**

- PC Card (Station)
  - Custom ASIC
    - MAC
    - PCMCIA Interface
    - Radio Modem
  - Microprocessor
  - Memory
  - Dual Antenna
- Access Point
  - Microprocessor
  - Ethernet Interface
  - PCMCIA Interface
  - Memory