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Abstract

Many current and future medical devices are wearable, using the human body as a conduit for
wireless communication, which implies that human body serves as a crucial part of the
transmission medium in body area networks (BANs). Implantable medical devices are designed
to provide patients with timely monitoring and clinical diagnostic tools to detect physiological
abnormalities. Body-mounted sensors are investigated for use in providing a ubiquitous
monitoring environment. In order to better design these medical devices, it is important to
understand the propagation characteristics of channels for in-body and on-body wireless

communication in BANSs.

This thesis is focused on the propagation characteristics of human body movements. Specifically,
standing, walking and jogging motions are measured, evaluated and analyzed using an empirical
approach. Using a network analyzer, probabilistic models are derived for the communication
links in the medical implant communication service band (MICS), the industrial scientific
medical band (ISM) and the ultra-wideband (UWB) band. Statistical distributions of the received
signal strength and second order statistics are presented to evaluate the link quality and outage
performance for on-body to on-body communications at different antenna separations. The
Normal distribution, Gamma distribution, Rayleigh distribution, Weibull distribution, Nakagami-
m distribution, and Lognormal distribution are considered as potential models to describe the
observed variation of received signal strength. Doppler spread in the frequency domain and
coherence time in the time domain from temporal variations is analyzed to characterize the
stability of the channels induced by human body movements. The shape of the Doppler spread
spectrum is also investigated to describe the relationship of the power and frequency in the
frequency domain. All these channel characteristics could be used in the design of
communication protocols in BANs, as well as providing features to classify different human body

activities.

Realistic data extracted from built-in sensors in smart devices were used to assist in modeling and
classification of human body movements along with the RF sensors. Variance, energy and
frequency domain entropy of the data collected from accelerometer and orientation sensors are
pre-processed as features to be used in machine learning algorithms. Activity classifiers with
Backpropagation Network, Probabilistic Neural Network, k -Nearest Neighbor algorithm and
Support Vector Machine are discussed and evaluated as means to discriminate human body

motions. The detection accuracy can be improved with both RF sensors and inertial sensors.
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1 Introduction

1.1 Background

In recent years, there has been a growing interest in Body Area Networks (BANs) for a
variety of healthcare applications. The development of micro-electromechanical systems
(MEMS) technology as well as the advancement in digital electronics and wireless
communications made it possible to design small size, low cost, energy efficient, power
scavenging, harmless medical and non-medical devices that could be placed inside or on
the surface of the human body. Traditionally, healthcare monitoring is performed on a
periodic check basis where the doctor must remember the symptoms, perform some tests
and plan the diagnostic in the treatment in the hospital. And medical devices are usually
attached to patients by wires. Many current and future medical devices are wearable and
the human body is used as a conduit for wireless communication, which implies that the
human body becomes a crucial part of the transmission medium in BANs ! 2,
Implantable devices such as Endoscopy Capsule are also investigated to effectively detect
abnormalities [*7). These new emerging technology enables the development of in-home
assistance, smart nursing homes, and efficiently handling of emergency cases, where
physicians could be aware of the patients’ situations and prepare immediately for needed

treatment [10].

The healthcare applications of wireless networks can be divided into two main categories:
in-body and on-body medical devices. On one hand, the in-body medical devices include
Pacemaker, Endoscopy Capsule, Implantable Cardiac Defibrillator (ICD) ", Glucose
Sensor, pH Monitor, etc. The Pacemaker performs daily remote monitoring and provides
the patients with timely notification of emergency situation. This implantable, long-
durable medical device is also capable of remote follow-up through back-end networks.
Traditional clinical diagnostic of the stomach is performed with gastroscopy where the
physicians operate with a long wire connected to the medical device on one end, while
the needle camera on the other end is put into the mouth and goes from esophagus to
stomach to detect problem problems in the stomach. Recently, the Endoscopy Capsule !'*!

replaces the wired apparatus in visualizing the stomach and small intestine to detect,

diagnose and monitor abnormalities. This swallowable capsule does not only reduce the
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patient’s discomfort, but also increases the efficiency of the treatment from the
physician’s perspective. Moreover, the Implantable Cardiac Defibrillator is intended to
protect patients against ventricular arrhythmias and helps patients to recover from
inappropriate shocks. As a result, the patients are able to self-cure from unexpected
accidents instead of waiting for an ambulance. On the other hand, the on-body medical
devices include blood pressure sensor, motion sensor, temperature sensor, etc. As the
percentage of elders grows in the whole population, “smart healthcare” is increasingly
viewed as a means of assisting residents and caregivers by providing continuous medical
monitoring, medical records access and emergency communication. Information on
residents’ health and life habits can be helpful for on-going diagnostics and future
treatment. These in-body and on-body medical devices greatly help patients to recover

from emergency situations while informing physicians of the patients’ health status.

Many medical devices are emerging in the industrial fields. The Givenlmaging company
2] has developed the PillCam platform to detect the abnormalities in the GI tract, along
with pH monitoring to help treat gastroesophageal reflux disease, etc. The St. Jude
Medical organization has provided patients with Pacemakers to perform daily monitoring,
ICDs to efficiently deliver the right therapy at the right time, etc. At the same time,
research projects are also carried out to solve the challenges in BANs. The UbiMon [ is
designed to provide a ubiquitous monitoring environment for wearable and implantable

[14-13] i an ad hoc sensor network infrastructure for emergency

sensors. The CodeBlue
medical care project developed at Harvard University. The MobiHealth ') is a project
based on a European initiative to create in-home healthcare assistance. However,
challenges still remain to be solved in the research and industrial fields. The design and
integration of Biosensor and system requires the medical device to be small in size,
assuring reduced risk to body tissues. The lifetime of medical devices needs to be longer,
achievable with the miniaturization of power sources. For the security issues, medical
devices are potentially vulnerable to interference and intrusion, which can result in life-
threatening situations as well as compromises of privacy. For system robustness, the
failure of one node should be detectable and recoverable immediately to protect patients

from harm. These key technologies are essential to future pervasive healthcare systems in

BANs 17,
12



The IEEE 802.15.6 Task Group 6 is working on the standardization of Body Area

Networks 1822

, include propagation characteristics and Medium Access Control
protocols for the Medical Implant Communication Service (MICS) band, the Industrial
Scientific and Medical (ISM) band and the Ultra-wideband (UWB) band. Seven channel
models are defined in the standard specifications to describe the possible communication
links for the implant node, body surface node and external node in BANs. Considering
the effects of small scale fading, large scale fading and shadowing due to the energy
absorption, reflection and diffraction by the body tissues, a variety of path loss models
are statistically derived for different scenarios at all possible bands. A power delay profile
(PDP) model for ultra-wideband is given along with the corresponding parameters.
Except for the research of fading effects of the human body, real time channel
measurements by use of a channel sounder has also been performed **!. Various body
surface positions and three human body motions are considered in this thesis. The
Normal, Lognormal and Weibull distributions are considered as the possible statistical
descriptions of the received power. The channel Power Spectral Density (PSD) is also
discussed to show the frequency selective fading effects for standing and walking

motions at different frequency bands and different antenna separations ).

But there are still many challenges in BANs, which call for increasing mobility, higher
capacity and lower power consumption. In order to better design wireless devices for
health care applications, it is essential to understand the propagation characteristics in
BANs *?° Fyrthermore, understanding the performance of on-body communication
links is also important in designing and evaluating Medium Access Control protocols for

specific scenarios *" %,

1.2 Motivation

As more and more elders suffer from heart attack, stroke, Parkinson’s syndrome B9 or
paralysis, remote healthcare monitoring systems [****! become of increasing importance
as means to notify and update physicians about the current status of their patients. Also
patients could receive treatment immediately in emergency situations, which can be aided

by accurate human body motion detection and wireless connection to the emergency

alarm system in the hospital. In addition to in-hospital applications, there are also needs

13



to track daily steps, distance walked, calories burned, hours slept, stairs climbed in
people’s daily lives. A lot of mobile applications on the iPhone and on the Android
devices are emerging online in the market to meet a variety of daily needs. Activity
recognition would also improve localization accuracy in tracking a person’s location
inside a building or in a downtown area and updating positions in the navigation systems.
Moreover, human body motion detection is appealing for application in the entertainment
environment. For example, the inertial sensors are employed in Wii or PS3 to record,

classify and visualize human motions via hand-held controllers.

With body mounted sensors, the human body motions can be recognized and remotely
detected in a variety of situations. In BANs, temporal variations of the communication
channel are related to body conditions, body motions, antenna positions, frequency bands
and the surrounding environment. The general characterization of on-body fading
channels can best be analyzed thoroughly in a scenario-based approach ). Among all
the influenced factors mentioned above, the human body motion is a key factor leading to
a greater variation of the communication channel. This RF propagation modeling of
human body motions utilizing Receive Signal Strength (RSS) information obtained from
narrowband measurements. This quantitative approach provides features for activity
classification, with features extracted from inertial sensors in smart devices. A variety of

human body motions can then be discriminated using pattern recognition algorithms.

A measurement campaign has been performed with regard to fading effects caused by
body movements. Studies of propagation characteristics for these dynamic channels have
been done in indoor environments at frequencies around 400 MHz (441 868 MHz [+ 461
2.4 GHz ") and 5 GHz P%**!. Measurements related to dynamic channels were
conducted in an anechoic chamber, office room and hospital room using either a channel
sounder in wideband experiments or a vector network analyzer (VNA) in narrowband
experiments (54661 'Some of past researches are analysis of on-body propagation effects,
including the modeling of path loss (PL) model " for a variety of scenarios at 400 MHz,
600 MHz, 900 MHz, 2.4 GHz, and UWB bands. Some previous papers are concentrated
on statistical characterization of channels for a given scenario by using a probability

density function (PDF) P* that is Lognormal, Weibull, Nakagami-m and Gamma
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distributions were considered to characterize on-body dynamic channels. Also cumulative
distribution functions (CDFs) have been analyzed, where Nakagami-m distribution used
to model indoor channels at 868 MHz. Other papers have concentrated on analysis of
second-order temporal statistics ! by extracting fading rate and fading duration from
measurement data. Channel temporal stability is also discussed (). More other papers are

researched on the dynamic channels induced by a variety of body movements (%],

Starting with the quantitative description of human body movements, body motion
detection algorithms can be investigated and derived to help in tracking human daily
activities as well as a subject’s consumed calories. Moreover, this health information is
extremely important to patients and elder people, who may seek monitoring and
treatment from physicians. A number of machine learning techniques have been studied
and applied to activity recognition using features extracted from body mounted sensors
such as accelerometer. Supervised learning algorithms are used for activity classification
include a probabilistic approach (Naive Bayes, Gaussian Mixture Model, Logic classifier),
a geometric approach (Support Vector Machine, Nearest Neighbor mean, multilayer
perceptron) or a binary decision approach (C4.5 Binary Decision Tree). Decision Table,
IBL, C4.5 and Naive Bayes classifiers are discussed and evaluated to discriminate a
variety of activities using five accelerometers placed at hip, wrist, arm, ankle and thigh
(7] The unsupervised learning method includes Hidden Markov Model (HMM) which
can be used to model simple activities. A chief goal of this approach is to determine the
hidden state sequence that corresponds to the observed sequence. However, it can be
difficult to classify complex or unfamiliar activities. Machine learning algorithms are
investigated and evaluated as an approach to classify different human body activities,

assisted with the features of RF sensor and inertial sensors.

1.3 Contribution of the Thesis

Though a considerable amount of prior research has been devoted to the channel
modeling and motion detection in BANS, little of the work describes dynamic channels
for human body motions in a quantitative and thorough manner. And no previous work

applied these RF characteristics to the human body activity classification field.
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This thesis is focused on the RF propagation modeling of human body motions using an
empirical approach ! ?. The characteristics of on-body to on-body channel model,
induced by continuous human body motions are measured and investigated for the
purpose of activity classification. The measurements are performed in a shielded room
which is constructed of thin metal. Based on a scenario approach, the probability

distributions and the second order statistics are measured and analyzed case by case.

Three categories of scenario are investigated: standing, walking and jogging. The
Rayleigh distribution is found not suitable to describe any of three human body
movement scenarios. However, the Weibull distribution is considered as a suitable
description of human body motions in most of the cases studied. The Lognormal
distribution is found to provide a better fit for standing scenario in several cases, The
Nakagami-m distribution is found to provide better fit for walking motion in several

scenarios, and the Gamma distribution fits better in a few cases for jogging motions.

Doppler spread spectrum, RMS Doppler bandwidth and the shape of Doppler spread
spectrum are measured and analyzed by the use of Vector Network Analyzer (VNA) to
provide a quantitative description of different body motions. Doppler spread is the width
of received spectrum when a single tone waveform has been transmitted, which provides
information about the fading rate induced by human body movements. For the standing
scenario, the Doppler spread is always below 1 Hz. For the walking motion, the Doppler
spread is greater than that for the standing scenario around 3 Hz. The jogging motion will
introduce maximum Doppler spread which is greater than 6 Hz. Also RMS Doppler
bandwidth is used to describe the spectral distribution of the power. Doppler spread and
RMS Doppler bandwidth are also of great importance to determine the maximum
signaling rate allowable for coherence demodulation and to improve detection and
optimize transmission at the physical layer. Coherence time, which is an alternative
description of Doppler spread in the frequency domain, is analyzed in the time domain
for different scenarios. The coherence time is usually below 90 ms for jogging motion,
around 100 ms for walking motion and more than 200 ms for the standing scenario.
Moreover, the shape of the Doppler spread spectrum is described with a Laplacian model,

a 4th order Gaussian model and a 4th order Polynomial model. In comparing with the
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RMSE of values found with the three shape models, it is found that most of the Doppler
spread shape could be described with a 4th order Gaussian model for the power. Yet,

several cases could also be described with a Laplacian model or a Polynomial model.

The propagation model effectively quantizes different body motions, which could be
utilized to classify different human body movements. Additionally, with pervasive
deployment of computing devices, smartphones are an option for use as the base station
to communicate with implant devices and other medical devices. This thesis also
investigates into the performance of motion sensors in the smart devices for use in body
motion detection. The variance, energy and entropy of sensors are extracted as features
for patterns recognition of human body motions. Combined with RSS features,
Backpropagation, Probabilistic Neural Network, k -Nearest Neighbor algorithm are
analyzed and evaluated as potential solutions to the activity classification problem with

improved detection accuracy.

1.4 Outline of the Thesis

Section 1 is the introduction of this thesis, describing the background, and motivation for
the work, and summarizing the contribution of the thesis. Section 2 discusses prior work
on channel modeling of BANS; path loss modeling, small scale fading, large scale fading
and effects of multipath fading are described in this section. At the end of the section, the
measurement environment, measurement equipment and measurement scenarios are
described. Section 3 presents a thorough discussion of channel modeling using
narrowband measurement experiment. In this section, probabilistic distributions of the
received signal strength for different scenarios and second order statistics are
investigated, including statistical distributions, fading rate and fading duration. The
analysis of Doppler spread spectrum, Doppler spreads, Root Mean Square (RMS)
Doppler spreads and coherence time are also investigated in this section. A set of time
domain waveforms and frequency spectra are shown visually to compare Doppler spreads
for different human body motions. Section 4 analyzes the performance of the inertial
sensors in smart devices to be used as features in activity classification algorithms.
Backpropagation, k-Nearest Neighbor (k-NN), Probabilistic Neural Network (PNN) and
Support Vector Machine (SVM) are discussed and evaluated in this section. Finally,
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conclusions are drawn to summarize propagation characteristics of channel modeling for

human body motions in BANs. Section 5 discusses potential avenues of the future work.
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2 Background and Methodology of Channel Modeling

2.1 Channel Modeling

The channel modeling is usually performed with an extensive physical measurement,
where measurement system is a crucial part in the modeling. The measurement
techniques, experimental environment, equipment, antennas and attenuators are also
important factors in constructing the actual physical channel models. Traditionally, there
are two physical measurement techniques: narrowband and wideband. In the narrowband
communication, the data speed is lower than wideband communication, but it could
provide stable long-range communication. But narrowband measurement could not
differentiate directed path and undirected paths, so wideband measurement is more
suitable in studying multi-path propagation. Different experimental environments may
result in a variety of channel models due to the multipath effects. In the indoor
environment, the transmitted signal arrives at the receiver from various directions over a

[65. 701 including directed path, reflected paths, diffracted paths, etc.

multiplicity of paths
Wireless communication from the transmitter to the receiver can be modeled with several
paths, line-of-sight (LOS), non-line-of-sight (NLOS). The LOS is the directed path from
the transmitter to the receiver. The NLOS is much more complex than LOS, where the
multipath is caused by the effects from floors, walls, objects. The Ray Tracing method is
derived to model multipath propagation from a geometric point of view, which is a
simplified solution for the Maxwell’s equation. The propagation effects are also closely
related to the center frequency and radiation pattern of the transmitter and receiver.
Taking consideration of the factors mentioned above, a relative accurately characterized
channel model would be effective in design, assessment and installation of a radio
network. And a lot of applications could be developed in the network.

IEEE 802.15.6 Task Group TG6 is intended to develop Body Area Networks for medical
devices and non-medical devices that could be placed inside or on the surface of human
body. The path loss is caused by the reflection, diffraction and absorption of the human
body tissues. The small scale fading and large scale fading are a result of the structure of
human body and body motions.

In order to describe the characterization of the electromagnetic wave propagation from

the devices those are close to or inside the human body, TG6 group has defined three
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types of nodes

[18]

e Implant node: A node that is placed inside the human body. This could

immediately below the skin to further deeper inside the body tissue.

e Body Surface node: A node that is placed on the surface of human skin or at most

2 centimeters away.

e External node: A node that is not in contact with human skin, between a few

centimeters up to 5 meters away from the body.

Seven scenarios are defined in which the medical devices will be operating ['"*). These

scenarios along with the location of the communication nodes are listed in Table 1,

corresponding to different frequency bands. The scenarios are grouped into classes that

can be represented by the same Channel Models (CM).

Table 1 Channel Model Scenarios

Scenario Description Frequency Band Channel Model
Sl Implant to Implant 402 — 405 MHz CM1
S2 Implant to Body Surface 402 — 405 MHz CM2
S3 Implant to External 402 — 405 MHz CM2
S4 Body Surface to Body Surface 13.5, 50, 400, 600, 900 MHz CM3
(LOS) 2.4,3.1-10.6 GHz

S5 Body Surface to Body Surface 13.5, 50, 400, 600, 900 MHz CM3
(NLOS) 2.4,3.1-10.6 GHz

S6 Body Surface to External 900 MHz CM4
(LOS) 2.4,3.1-10.6 GHz

S7 Body Surface to External 900 MHz CM4
(NLOYS) 2.4,3.1-10.6 GHz

The communication distance varies from a few centimeters up to 5 meters. Possible

communication links are shown in fig. 1 below.

o Non-Implant device
e Implant device

Figure 1: Possible Communication Links for Body Area Network
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Based on various scenarios defined in the draft, we discuss some existing channel models

from previous work, including path loss models and fading models.

2.2 Path Loss Channel Model

In traditional wireless communications, path loss model is both frequency and distance
dependent. The channel path loss at a given time is given by

PL(t) = Py — Pry(t) + Gamplifier — Leable (D
where Py, is the transmitted power, B, (t) is the RMS received power at given time t,
Gampiifier 18 amplifier gain and L¢gp;e is cable loss.
Normally, the path loss is modeled from extensive physical experiments. A variety of
measurements have been performed in channel modeling to characterize this power
distance relationship. Since the physical measurement inside human body is not feasible,
a 3D immersive simulation and visualization platform was developed to study the
propagation characteristics of MICS %, A multi-thread loop antenna is used as the
antenna for implant inside a male object in the simulation. A statistical path loss model

has been derived in the form of the following equation.
PL(d) = PL(d,) + 10nlogy, (di) +S )
0

Where S~N (0, g5) and d, = 50mm. The parameters extracted for the implant to implant

(S1) and implant to body surface (S2) are expressed in table 2 and table 3 ¢,
Table 2: Implant to Implant (S1) for MICS

Implant to Implant PL(dy) (dB) n o, (dB)
Deep Tissue 35.04 6.26 8.18
Near Surface 40.94 4.99 9.05

Table 3: Implant to Body Surface (S2) for MICS

Implant to Body Surface PL(dy) (dB) n o, (dB)
Deep Tissue 47.14 4.26 7.85
Near Surface 49.81 4.22 6.81

Various scenarios at different frequency bands (400 MHz, 600 MHz, 900 MHz, 2.4 GHz
and UWB) and various transmission ranges have corresponding proposed path loss

models and corresponding parameters for scenarios defined in table 1.
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When it comes to the path loss model for different human body motions, it would be
difficult to generalize a formal equation to represent the fading effects of the channels.
Therefore, the channel variation at 800 MHz and 2.36 GHz are measured and discussed
(71721 for different human body motions and antenna placement. The average path loss is

shown in table 4 and the peak-to-through path loss variation is shown in table 5.
Table 4: Average Path Loss (dB)

(a) 820 MHz

Receiver at Right Hip; Transmitter at: Receiver at Chest;
Transmitter at:

Chest Right Left Right Left Back Back Right Right

Wrist Wrist Ankle Ankle Wrist Ankle
Standing 57.4 50.2 59.8 54.3 68.7 61.8 66.3 54.5 54.3
Walking 52.9 38.4 63.6 48.1 55.5 57.1 63.8 51.3 56.9

Running 44.1 37.2 60.2 48.9 54.2 62.3 66.3 49.4 54.1

(b) 820 MHz

Receiver at Right Hip; Transmitter at: Receiver at Chest;
Transmitter at:

Chest Right Left Right Left Back Back Right Right
Wrist Wrist Ankle Ankle Wrist Ankle

Standing 65.3 44.5 74.7 60.9 70.7 753 73.0 70.5 66.3

Walking 59.1 473 59.8 53.9 58.5 674 72.0 64.9 62.4

Running 55.9 36.3 52.5 55.0 59.0 68.5 71.7 574 63.3

Table 5: Peak-to-through path loss variation

(a) 2.36 GHz

Receiver at Right Hip; Transmitter at: Receiver at Chest;
Transmitter at:

Chest Right Left Right Left Back Back Right Right

Wrist Wrist Ankle Ankle Wrist Ankle
Standing 1.6 0.7 2.2 5.1 1.8 5.1 3.0 2.2 0.7
Walking 30.0 35.1 24 .4 24.4 26.5 13.5 23.7 34.0 17.2
Running 38.0 45.6 28.0 32.8 27.9 23.8 30.9 27.8 32.5
(b) 2.36 GHz
Receiver at Right Hip; Transmitter at: Receiver at Chest;

Transmitter at:

Chest Right Left Right Left Back Back Right Right

Wrist Wrist Ankle Ankle Wrist Ankle

Standing 33 2.0 1.8 2.4 7.1 1.4 4.2 1.3 11.3
Walking 20.0 39.6 24.5 22.5 21.1 14.1 8.6 21.2 20.4
Running 30.3 46.8 33.7 284 24.1 16.3 9.3 294 19.5
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2.3 Fading

In the Body Area Networks, the human body is used is a medium of communication,
which may cause energy absorption, diffraction, reflection. The fading effects may be
also caused by different body posture and surrounding environment.
The fading consists of small scale fading and large scale fading. Small scale fading refers
to the fast changes in the amplitude and phase of received signal strength in a small local
area. Large scale fading is the fading due to the motions in large area.
In IEEE 802.15.6 documents, the small scale fading is modeled as a Ricean distribution
(8] with K factor that decreases as the path loss increases. The K factor is defined as:

Kgp = Ko — mgPgp + ogng 3)
Where K, is the fit with measurement data for the K-factor for low path loss, my is the
slope of the linear correlation between path loss and K-factor, g, is the log-normal
variance of the measured data between path loss and K-factor, ng is the zero mean and
unit variance Gaussian random variable and P, is the path loss in dB.

For the different scenarios defined in Table 1, the small scale fading is represented by

Ricean distribution with corresponding parameters K, mg, ox and ng.

2.4 Power Spectral Density

The channel’s power spectral density (PSD) is a visual description of the channel
response. PSD analysis of three common body motions is presented in [71] at 820 MHz
and 2.36 GHz with illustration of figures. A 10s measurement for each scenario is
performed with Vector Signal Generator, Vector Signal Analyzer, Low Noise Amplifiers
and antennas for 802 MHz and 2.36 GHz. The power spectral density for each of 40us
sample v is calculated by correlating v with a replica of the transmitted PN sequence and
then applying a Fast Fourier Transform. The variation of PSD reflects the frequency-
selective fading effects of channels and is consistent with the movement of the test
subject. The PSD for the standing motion is generally flatter than those when the object is
moving. And running movement caused more variation in the PSD than walking. An

example of PSD for three human body motions is illustrated in Figure 2 below.
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(a) Back to Right Hip, standing, 2.36 GHz
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(b) Back to Right Hip, walking, 2.36 GHz
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(c) Back to Right Hip, running, 2.36 GHz

Figure 2: Power Spectral Density

2.5 Statistical Description of Received Power

5%in the

Channel Sounder has been used to perform the real-time channel measurements
anechoic chamber room at a center frequency of 4.5 GHz for body movements. The
fading effects caused by human body motions are analyzed statistically. Normal
distribution, log-normal distribution and Weibull distribution are considered as possible
probability density functions, and are tried to fill the measurement results. The negative
log likelihood is used to evaluate the fitting effects of the distributions. Moreover, link
margin based performance is also analyzed to verify possible implementation and help in

system design. The fade duration is defined as the continuous duration when the received
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signal power drops below the mean of the received signal strength during the
measurement and is fitted into Gamma distribution !"®!. The fade magnitude, defined as
the maximum fade depth with respect to the mean, is used as the indicator of the
attenuation level a signal may encounter. And the level crossing rate is used to represent

the statistics of the signal across into a fade when it next crosses into a fade.
2.6 Experimental Method

2.6.1 Measurement Environment

The channel measurements were performed by using two antennas placed on a test
subject in a shielded room with a size of 2.32m X 2.41m X 2.29m at Center for
Wireless Information Network Studies (CWINS) lab of Worcester Polytechnic Institute.
The shielded room is designed to block external static and non-static electric fields and to
provide a radio-silent environment. This copper room would keep RF energy within the
cage rather than keep it out. The experimental environment is shown in Figure 3 with the

relative location of the room and the test subject.

2.41m

— 25 —>

Figure 3: Experimental Environment

The real test environment is shown in Figure 4, where the shielded room is located inside
CWINS lab and the RF sensors are mounted on the surface of human body. We
investigated into the RF propagation modeling for the on-body to on-body

communication links in this environment.
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(b) Shielded Room

Figure 4: Experimental Environment

2.6.2 Measurement Setup

An extensive measurement is performed with the use of Agilent Vector Network
Analyzer (VNA) to obtain S21 parameters. In the channel measurements, three sets of
antennas are used during the measurements, all of which are omni-directionally working
at 400 MHz, 2.25 GHz and 4.5 GHz within MICS, ISM and UWB bands. Antennas used
for narrowband measurement at 400 MHz consist of a loop antenna as the receiver and a
helical antenna as the transmitter; monopole antennas, working in a frequency band from
2.1 GHz to 2.4 GHz, are designated to send a single tone waveform at 2.25 GHz from
transmitter to receiver; and patch antennas (SkyCrossTM SMT-3TO10M-A) whose
working frequency range is 3 GHz and 8 GHz are proposed to send and to receive a

single tone waveform at 4.5 GHz. The three sets of antenna are shown in Figure 5 below.
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(a) Loop Antenna and Helical Antenna Working at 400 MHz

(b) Monopole Antenna Working at 2.25 GHz

(c) Patch Antenna Working at 4.5 GHz
Figure 5: Three Sets of Antenna used in Measurement

Short time channel gain variations were measured using Agilent E8363B Vector Network
Analyzer (VNA) shown in Figure 6. A continuous single tone signal waveform at 400
MHz, 2.25 GHz, and 4.5 GHz with a transmission power of 0 dBm was generated
respectively by Transmission (TX) port of VNA in time domain. S21 Parameter,
measured and stored in the PC in real time, was analyzed and evaluated off-line. In the 20
second interval, the network analyzer took samples of amplitudes of the received signal at
the rate of 80 samples/s. Therefore the maximum Doppler shift measurable is 40 Hz, and

resolution is 0.012 Hz.
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Figure 6: Agilent E8363B Vector Network Analyzer

All measurements were based on different motions, where transmitting (TX) and
receiving (RX) antennas were attached to different positions of human body. Using a
scenario-based approach **!, a scenario set, denoted by S = {F, M, TX, RX}, is composed
of a frequency set F, a motion set M and two antenna position sets TX and RX. In the
motion set, three different human movements have been measured: standing still, walking
and jogging on a spot, denoted as M = {Stand, Walk, Jog}. Only respiration and
palpitation exist when the human body is standing still. For the walking cycle, the human
body is walking with arms and feet moving slowly and repeatedly in a small range. When
the human body is jogging, both arms and feet moved back and forth very quickly, which
would cause greater channel fluctuation. The frequency set F is composed of F = {400
MHz, 2.25 GHz, 4.5 GHz}, where the increasing frequency of transmitters would have
impact on small scale fading characteristics of body area network.

The transmitting and receiving antennas are placed at different positions on the test
subject’s body. For the on body to on body communication, the receiver is fixed at the
right hip of the test subject, since the coordinator in the BANSs is often considered as the
center to receive data from other sensors in-body or on-body. The receiver set is RX =
{Right Hip}. And the transmitter is strapped to Back, Left Wrist, Left Ankle and Right
Ankle, represented by TX = {Back, Left Wrist, Left Ankle, Right Ankle}. The
communication link between right ankle and right hip is Line-of-Sight (LOS) propagation,
while other communication links from left wrist, left ankle and back to right hip are
considered as Non-Line-of-Sight (NLOS) propagation. Figure 7 shows the locations of
antennas on the tested subject. The blue points indicate the possible transmitter antenna

position and the red point is the receiver antenna placement.
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Figure 7: Antenna placement on the surface of human body

The antenna separation among these body mounted sensors is shown in Table 6. Different
transmission range would have different impact on the path loss, as will be discussed in

the next chapter.

Table 6: Antenna Separations for on-body to on-body link

TX Back Left Wrist Left Ankle Right Ankle

Antenna separation (mm) 88.90 111.76 139.69 121.92
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3 Propagation Characteristics of Human Body Motions

3.1 Path Loss Model
According to the path loss model "%, the statistical path loss model has been derived in

the form of the following equation.

PL(d) = PL(dy) + 10alogq¢(d) 4)
where PL(dy) = 10log,, (%) = —10logloGtGr(ﬁ)2 , which is the path loss in the first
0

meter. The path loss is closely related to the antenna separation and it changes slowly
with the distance between the transmitter and receiver.
In this section, we present path loss models for the relationship between the averaged
received power and the distance between the transmitter and the receiver. This distance-
power relationship could be used for coverage among these body mounted medical
devices. Using VNA, the path loss PL(d) in dB from the transmitter to receiver is
obtained by:

PL(d) = 20log |S24] (5)
Where S, is the scalar linear gain. This is simply scalar voltage gain as the linear ratio of
the output voltage and the input voltage.
For the dynamic channels caused by human body movements, it is very difficult to derive
a fixed distance-power relationship. Therefore we analyze the maximum path loss, the
minimum path loss, the mean and the variance for each scenario. For scenario set S1 =
{{2.25GHz}, {Stand, Walk, Jog}, {Left Ankle}, {Right Hip}}, the time domain data are
shown in Figure 8 below, where the antenna separation is 139.69 mm in static scenario.
The path loss varies in a range of 8.2925 dB for standing, 25.4256 dB for walking,
30.4314 dB for jogging. The variation of path loss also increments when the intensity of

motion increases.
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Figure 8: Time Domain Data for Standing, Walking and Jogging Motions, Left Ankle to Right Hip,
2.25GHz.

The summarized results for all the scenarios are shown in Table 7 for 400 MHz, Table 8
for 2.25 GHz and Table 9 for 4.5 GHz. For different antenna separations, the relationship
between path loss and antenna separation for the standing motion are shown in Figure 9

below. In the free-space, the path loss is proportional to the logarithm of the antenna
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separation. When we consider the path loss for different human body motions, it does not
vary according to the path loss model described in eq.4. For the 400 MHz, the channel
suffers from deep fading when the transmitter antenna is placed at the back of human

body, where breathing is the most influencing factor.
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Figure 9: Maximum, Minimum and Mean of Path Loss at 400 MHz, 2.25 GHz, 4.5 GHz for Standing

Motion
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As the intensity of motions increases, the upper bound of path loss increases and the
lower bound of path loss decrements. Except the range characteristics, the mean and
variance of path loss in time domain is also statistically analyzed to provide as an
indication of different motions. Table 7, 8 and 9 also shows the mean and variance for
different center frequency. The range of path loss data varies considerably between
different movements. The variation is an important feature when attempting to

distinguish between possible motions.

Table 7: Path Loss for 400 MHz

Antenna Motion Maximum Minimum Path | Path Loss Path Loss Path Loss
Position Path Loss (dB) | Loss (dB) Range mean (dB) Variation
Back Stand 47.1488 42.3669 47818 44.5848 0.9889
Walk 59.7022 45.5456 14.1566 49.8408 6.5676
Jog 81.8554 42.3287 39.5267 53.9787 25.3460
Left Wrist Stand 44.258 42.7338 1.5242 43.4391 0.1053
Walk 44.0262 30.6025 13.4237 34,9540 5.3646
Jog 49.5456 30.1517 19.3939 38.2696 11.0196
Left Ankle Stand 32.8673 32.2366 0.6307 32.4562 0.0159
Walk 35.0065 30.0469 4.9596 31.5253 0.9651
Jog 42.7912 28.3675 14.4238 32.7367 7.7416
Right Ankle | Stand 35.7959 35.3448 0.4512 35.6182 0.0077
Walk 46.8073 33.1908 13.6165 38.3890 8.0918
Jog 43.2125 24.0535 19.1590 28.8432 11.0716

Table 8: Path Loss for 2.25 GHz

Antenna Motion Maximum Path | Minimum Path | Path Loss Path Loss Path Loss
Position Loss (dB) Loss (dB) Range mean (dB) Variation
Back Stand 30.3085 28.8099 1.4986 29.5321 0.1874
Walk 47.9087 28.9765 18.9321 34.9060 7.8953
Jog 64.4396 31.8968 32.5428 41.3900 24.4960
Left Wrist Stand 46.8056 37.4452 9.3604 38.1361 0.3522
Walk 57.0295 30.8259 26.2035 40.9452 18.7119
Jog 59.6926 25.9274 33.7652 35.2925 24.7338
Left Ankle Stand 51.1067 42.8142 8.2925 47.5087 3.7828
Walk 59.006 33.5534 25.4526 38.9877 14.1840
Jog 61.4071 30.9757 30.4314 40.7798 27.0567
Right Ankle | Stand 42.0613 39.1789 2.8824 40.7668 0.5338
Walk 78.34 31.0109 47.3291 39.1497 41.8973
Jog 56.2398 28.6039 27.6359 38.6875 23.8783
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Table 9:

Path Loss for 4.5 GHz

Antenna Motion Maximum Path | Minimum Path | Path Loss Path Loss Path Loss
Position Loss (dB) Loss (dB) Range mean (dB) Variation
Back Stand 58.5983 49.6259 8.9724 52.7215 3.5503
Walk 83.6773 45.6699 38.0074 54.8756 25.4209
Jog 77.3137 44.3949 32.9188 55.9779 32.7843
Left Wrist Stand 45.0966 41.6227 3.4739 42.8875 0.9854
Walk 74.6919 42.9598 31.7321 52.2063 30.2601
Jog 70.3539 43.0998 27.2540 54.0882 22.5069
Left Ankle Stand 67.158 53.4394 13.7187 59.3197 7.6558
Walk 74.6117 42.9559 31.6558 52.5264 27.4258
Jog 75.8169 44.4109 31.4060 54.5276 22.6047
Right Ankle | Stand 56.3956 52.3496 4.0460 53.7640 0.8707
Walk 74.3064 42.1481 32.1583 50.4317 19.0877
Jog 72.6759 43.0925 29.5835 52.6473 21.9299

3.2 Statistical Analysis of Human Body Motions

The statistical characterization of the channels is based on the received signal amplitude,
which are needed for the calculation of the average error rate for different transmission
techniques over a fading wireless channel. To calculate the error rate, it is important to
understand the error rate behavior over the statistics of fading channels. We take
consideration of the varying body movements, different frequencies and various antenna
positions into account. Normal, Gamma, Rayleigh, Weibull, Nakagami-m and Lognormal
distributions are considered as the potential fading statistical distributions for body
movements. Averaged fade duration, level crossing rate and outage probability are also
discussed to provide accurate parameters for body area communication system design.
Furthermore, the Doppler spread, Root Mean Squared (RMS) Doppler spread and
coherence time are evaluated to provide a quantitative description to be used for activity

classification.

3.3 First Order Statistical Characterization

According to different measurement scenarios, the statistical distributions of the envelop
fading are summarized for each of the scenario, where effects of human body motions,
antenna positions, and transmission frequencies are all taken into account in this section.

The Normal, Gamma, Rayleigh, Weibull, Nakagami-m and Lognormal distributions are
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considered as potential statistical models for received signal strength in time domain.

Probability Density Function (PDF) of these six common probabilistic distributions are

described below

[69]

Normal distribution

1 —(v—y\2
f(xln,0) = —=exp (=54} (6)

where u is the mean, o2 is the variance and x is the envelope amplitude of the
received power. The normal distribution suggests the averaged received signal
strength forms the Gaussian distribution function. The cumulative distribution

function (CDF) of normal distribution is given by

F(xp,0);[1+erf () ()

Gamma distribution

f(xla,b) = i xtexp 3} (8)

where a is the shape parameter, b is the scale parameter and x is the envelope
amplitude of the received signal. The cumulative distribution function of Gamma

function is given by

1 X
Rayleigh distribution
2
f(xlo) = Sexp{- S}, x € (0,+00) (10)

where x is the envelope amplitude of received signal, 62 is the mean power of the

received signal. Rayleigh distribution is the most popular distribution function used

for statistical modeling of the envelop fading of radio signals. And it is considered as

a reasonable envelop fading channel model of a received signal for mobile

communication systems. The cumulative distribution function of Rayleigh

distribution is given by

F(x;0) = 1 — e **/20" (11)
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e  Weibull distribution

Fxty) =I se{-()] xzo0 (12

0 otherwise

where x is the envelope amplitude of received signal, k is the shape factor, y is the
scale factor. Both the shape and scale factors are positive to characterize the Weibull
distribution. The Weibull distribution is considered to show a good fit to experimental
fading channel measurements in outdoor environments. Weibull distribution also
exhibits a good fit for some cases on-body channel fading models. The cumulative

distribution function of Weibull distribution is given by

F(x;y) =1— e G/M" (13)

e Nakagami-m distribution

2mm
r(m)w™

f(xIm, @) = x*mlexp {—%xz} (14)

where I'(.) is the Gamma function, x is the envelope amplitude of received signal, m
is the shape factor and w is a controlling speed. A special case is when m = 1,
Nakagami-m fading performs similar as Rayleigh fading with an exponentially

distributed power. Nakagami-m distribution !

is regarded as the best fit to some
urban multipath measurements occasionally. The cumulative distribution function of

Namagami-m distribution is given by

y(m2x%)

Flx;m, o) = o (15)
e Lognormal distribution
1 (Inx—p)?
[l o) = “—exp{- T xe (04w} (16)

where x is the envelope amplitude of received signal, u is the mean of distribution,
and o is the standard deviation of the Log-normal distribution. The Lognormal
distribution suggests that the decibel value of the averaged received signal strength
forms a Gaussian distribution function. And it is used to model large-scale variations
in the received signal strength in indoor and urban radio channels. The cumulative

distribution function of the Lognormal distribution is given by
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Fx;p,0) =5 +erf [1] (17)

The amplitude is normalized to the maximum amplitude value. Therefore, the CDF of the
amplitude is distributed between 0 and 1. In order to compare the goodness of statistical
distribution fittings, we obtain the negative log likelihood ratio between the CDF of
measurements and theoretical Cumulative Density Function (CDF) for the Normal,
Gamma, Rayleigh, Weibull, Nakagami-m and Lognormal distributions.

Figure 10 shows a comparison of CDF fittings for scenario set S1 = {{2.25 GHz},
{Stand, Walk, Jog}, {Left Ankle}, {Right Hip}} in the shielded room. In this scenario,
Weibull distribution has the maximum log likelihood ratio for jogging movement.
Therefore, we consider Weibull distribution as the best fit for this scenario.

Table 10 shows the negative log likelihood of these six common probability distribution
of Normal distribution, Lognormal distribution, Gamma distribution, Nakagami-m
distribution, Weibull distribution and Rayleigh distribution at 2.25 GHz. For scenario set
S1, the best fitting for the standing motion is Lognormal; the best fitting for walking

motion is Nakagam-m; the best fitting for jogging motion is Weibull.
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Figure 10: Cumulative Distribution Function Fittings for the transmission link from left ankle to right hip
of at 2.25 GHz for standing, walking and jogging movements

Table 10 gives parameters for these CDF distributions fitted to the envelope of the
normalized received signal strength for scenario set S via the negative log likelihood. For
a total number of 36 measurements of scenario set S, there are sixteen scenarios fitted
into Weibull distribution. B7ased on a case by case analysis, Lognormal and Weibull
distributions fit better for standing motion. There are five cases falls into Weibull
distribution and five cases falls into Lognormal distribution for standing motion.

Nakagami-m and Weibull distribution are good candidates for a statistical model for
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walking motion. Nakagami-m distribution fits better in five cases and four cases of
walking motion fall into Weibull distribution for the walking motion. For the jogging
motion, Gamma distribution and Weibull distribution are better candidates than other
distributions. Weibull distribution fits into seven cases and Gamma distribution fits into

three cases for jogging motion.
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Table 10:

Cumulative Distribution Fittings for 400 MHz, 2.25 GHz and 4.5 GHz

(a) 400 MHz Single Tone Waveform

Antenna Body Normal Lognormal Gamma Nakagami Weibull Rayleigh
Placement | motions uwo u,a a,b m,w k,y o
—NlogL —NlogL —NlogL —NlogL —NlogL —NlogL
Back Stand | 0.636573, | -0.477734, | 19.3383, 5.03769, 0.694838, | 0.461605,
0.144726, | 0.229544, | 0.0329177, 0.426158, | 4.81837, -109.3731

-822.8594 | -849.2287 | -849.9565 -843.8681 | -804.039
Walk | 0.428414, | -1.00302, 3.37604, 1.0384, 0.485014, | 0.342026,
0.224625, | 0.591497, | 0.126898, 0.233963, | 2.02561, -228.3528

-119.5161 | -175.1843 | -229.3472 -229.0731 | -228.5637
Jog 0.121489, | -2.67664, 1.01338, 0.341163, | 0.119944, | 0.130865,
0.139656, | 1.18377, 0.119884, 0.0342512, | 0.973471, | -624.8668

-879.9153 | -1742.9 -1772.8 -1640.5 -1773.7
Left Wrist | Stand | 0.832109, | -0.186605, | 177.91, 45.1691, 0.860112, | 0.5900006,
0.0617265, | 0.075503, | 0.00467712, | 0.696213, | 15.0824, 210.1733

-2186.3 -2162.5 -2171.8 -2179.7 -2173.6
Walk | 0.41316, -1.00413, 43191, 1.31206, 0.466293, | 0.320747,
0.187291, | 0.534026, | 0.0956588, 0.205757, | 2.33446, -432.1229

-410.3487 | -340.4986 | -445.2157 -465.9071 | -462.1922
Jog 0.203037, | -1.87996, 1.90046, 0.573095, | 0.223401, | 0.185671,
0.166555, | 0.767347, | 0.106836, 0.0689471, | 1.35492, -780.1574

-598.0871 | -1161.8 -1113.3 -988.5387 | -1067.6
Left Stand | 0.94656, -0.055345, | 1179.15, 297.918, 0.958668, | 0.669598,
Ankle 0.0273019, | 0.0292815, | 0.000802745, | 0.896722, - | 45.0471, 405.1001

-3491.5 -3468.0 -3476.1 3483.8 -3634.2
Walk | 0.723654, | -0.346473, | 21.875, 6.13568, 0.778982, | 0.521421,
0.141764, | 0.226276, | 0.0330813, 0.54376, 6.38018, 70.5249

-855.9421 | -662.1582 | -740.1438 -801.0025 | -932.2769
Jog 0.428698, | -1.00876, 3.24823, 1.07959, 0.482953, | 0.336102,
0.205363, | 0.641208, | 0.131979, 0.225929, | 2.19345, -275.0730

-262.9594 | -55.2559 -204.6061 -277.9967 | -284.8665
Right Stand | 0.933472, | -0.069058, | 2338.48, 582.194, 0.943505, | 0.660207,
Ankle 0.0193967, | 0.0206413, | 0.000399178, | 0.871747, - | 43.0327, 381.8467

-4038.4 -4049.4 -4045.9 4042.2 -3778.9
Walk | 0.360055, | -1.19924, 2.96927, 0.963884, | 0.406143, | 0.287917,
0.190198, | 0.655239, | 0.121261, 0.165792, | 1.97577, -465.4818

-385.7000 | -325.3910 | -429.9747 -466.1916 | -465.6716
Jog 0.410615, | -1.10995, 2.42795, 0.833529, | 0.460569, | 0.332069,
0.227965, | 0.767333, | 0.16912, 0.22054, 1.82722, -151.8007

-95.9017 70.1500 -106.5844 -170.4008 | -162.0036
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(b) 2.25 GHz Single Tone Waveform

Antenna Body Normal Lognormal Gamma Nakagami Weibull Rayleigh
Placement | motions u,o uo a,b mw k,y o
—NlogL —NlogL —NlogL —NlogL —NlogL —NlogL
Back Stand | 0.848754, | -0.168982, | 100.244, 25.0942, 0.888379, | 0.603188,
0.0853918, | 0.0997091, | 0.00846692, | 0.72767, 10.6457, 252.6847

-1667.0 -1689.4 -1683.5 -1676.6 -1592.3
Walk | 0.307738, | -1.36394, 2.85216, 0.864643, | 0.347116, | 0.253918,
0.185117, | 0.647798, | 0.107897, 0.128949, 1.76548, -604.0734

-429.0301 | -607.1834 | -657.6934 -615.7388 | -627.8468
Jog 0.179898, | -2.22381, 1.12067, 0.391516, | 0.184141, | 0.177798,
0.175728, 1.1653, 0.160527, 0.0632244, | 1.05922, -368.6381

-512.3035 | -1043.5 -1151.0 -1086.9 -1.1490
Left Wrist | Stand | 0.853051, | -0.167059, | 61.7193, 17.8244, 0.891058, | 0.606849,
0.0940221, | 0.14525, 0.0138215, | 0.736531, 12.3197, 268.9720

-1513.0 -1084.4 -1290.7 -1395.5 -1665.9
Walk | 0.146352, | -2.33855, 1.34179, 0.430522, | 0.15412, 0.14517,
0.144022, | 0.999904, | 0.109072, 0.0421484, | 1.14423, -833.8468

-830.6574 | -1472.0 -1514.0 -1386.1 -1499.5
Jog 0.186266, | -2.15846, 1.18519, 0.424852, | 0.19404, 0.175862,
0.164855, 1.17303, 0.157161, 0.061855, 1.11876, -508.2449

-614.5048 | -928.3860 | -1102.7 -1081.9 -1104.5
Left Stand | 0.391669, | -1.04092, 4.98752, 1.35498, 0.444424, | 0.306875,
Ankle 0.186979, | 0.449024, | 0.0785298, | 0.188344, | 2.24365, -514.7312

-413.0112 | -676.7629 | -627.4034 -556.4250 | -532.9719
Walk | 0.37733, -1.25688, 1.9214e, 0.679568, | 0.419002, | 0.314446,
0.23539, 0.868224, | 0.196377, 0.197752, 1.57945, -91.2185

-44.6139 32.7104 -126.6559 -183.4908 | -164.3367
Jog 0.178401, | -2.26543, 1.05856, 0.381245, | 0.181076, | 0.175122,
0.171834, 1.23818, 0.168531, 0.0613354, | 1.0376, -350.5834

-548.1643 | -1013.1 -1159.6 -1120.8 -1159.7
Right Stand | 0.697915, | -0.374115, | 34.7506, 8.68605, 0.750417, | 0.500897,
Ankle 0.121321, | 0.168483, | 0.0200835, | 0.501795, | 5.89734, -13.7527

-1105.1 -1178.3 -1159.2 -1136.0 -1017.0
Walk | 0.284339, | -1.87991, 0.935004, 0.376304, | 0.285607, | 0.26094,
0.235298, 1.49374, 0.304105, 0.136179, 1.01241, 308.7650

-45.2422 -96.0009 -414.5410 -487.8587 | -412.3126
Jog 0.165055, | -2.33319, 1.07644, 0.37893, 0.167154, | 0.164663,
0.164322, 1.16673, 0.153335, 0.0542281, | 1.03035, -439.2278

-619.6824 | -1216.6 -1285.1 -1221.7 -1283.5
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(c) 4.5 GHz Single Tone Waveform

Antenna Body Normal Lognormal Gamma Nakagami Weibull Rayleigh

Placement | motions uwo uwo a,b mw k,y o
—NlogL —NlogL —NlogL —NlogL —NlogL —NlogL
Back Stand | 0.529034, -0.724592, | 5.85053, 1.70605, 0.596087, 0.402225,
0.209094, 0.436223, 0.090425, 0.32357, 2.7848, -155.0313

-234.1549 | -216.9086 | -256.7787 | -272.2925 | -274.7080

Walk | 0.200734, -2.09074, 1.16952, 0.418209, 0.208544, 0.190865,

0.180513, 1.1883, 0.171639, 0.0728588, | 1.10936, -354.6198
-469.3206 | -799.3509 | -981.0411 -954.4584 | -982.6837

Jog 0.12086, -2.78863, 0.86922, 0.324592, 0.116142, 0.124111,
0.127319, 1.4097, 0.139044, 0.0308072, | 0.917615, -615.2336
-1027.9 -1642.6 -1791.8 -1756.8 -1790.9

Left Wrist | Stand | 0.757367, -0.302991, | 20.0987, 5.40857, 0.822574, 0.547758,
0.162755, 0.228911, 0.0376823, | 0.600077, 5.64788, 158.6344
-635.0115 | -574.0634 | -601.7434 | -624.7135 | -681.8244

Walk | 0.201123, -2.14254, 1.06388, 0.396405, 0.20592, 0.190539,
0.179388, 1.2882, 0.189047, 0.0726105, | 1.06559, -277.2080
-479.3230 | -753.0662 | -968.0662 | -972.0807 | -971.0679

Jog 0.138789, -2.51726, 1.05726, 0.384194, 0.140953, 0.135085,

0.131317, 1.23158, 0.131272, | 0.0364958, | 1.0394, -778.3166
-978.4212 | -1424.5 -1561.2 -1533.2 -1561.6

Left Stand | 0.324589, | -1.32304, 2.68218, 0.807001, | 0.366036, | 0.2719,
0.206222, | 0.642722, 0.121017, | 0.147859, 1.68645, -450.5633

Ankle -256.2854 | -554.3361 -537.3220 | -476.7527 | -494.9540

Walk | 0.180957, | -2.22175, 1.11316, 0.409151, | 0.186674, | 0.170829,

0.160111, 1.22276, 0.162561, | 0.0583648, | 1.08801, -499.9038
-661.2210 | -963.2178 | -1140.8 -1137.5 -1143.9

Jog 0.152835, | -2.42544, 1.04931, 0.377009, | 0.154845, | 0.150934,
0.149056, 1.26882, 0.145653, | 0.0455621, | 1.03283,- | -570.2239
-775.6965 | -1229.9 -1406.6 -1363.0 1406.8

Right Stand | 0.697892, | -0.382181, | 22.3974, 6.06767, 0.754165, | 0.503373,
0.140455, | 0.218571, 0.0311594, | 0.506768, | 5.89407, 14.9323

Ankle -870.7818 | -774.7176 | -816.4416 | -848.7342 | -906.3981
Walk | 0.211446, | -1.9174, 1.52028, 0.530728, | 0.229124, | 0.188051,
0.161349, 1.02224, 0.139084, | 0.0707265, | 1.3148, -679.4876

-648.8990 | -762.8482 | -961.6184 | -959.9136 | -971.8924

Jog 0.173576, | -2.27774, 1.08583, 0.401207, | 0.178091, | 0.164535,
0.155015, 1.24595, 0.159855, | 0.0541433, | 1.07067, -530.4517
-712.9709 | -1022.7 -1205.2 -1203.1 -1207.5

After comparison of negative log-likelihood of these possible distributions, a fitted

distribution is selected for each scenario in Table 11 below.
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Table 11: Fitted Statistical Distribution for Each Scenario

(a) 400 MHz Single Tone

Fitting Stand Walk Jog
Back Gamma Gamma Weibull
Left Wrist Normal Nakagami Lognormal
Left Ankle Weibull Weibull Weibull
Right Ankle Lognormal Nakagami Nakagami
(b) 2.25 GHz Single Tone
Fitting Stand Walk Jog
Back Lognormal Gamma Gamma
Left Wrist Weibull Gamma Weibull
Left Ankle Lognormal Nakagami Weibull
Right Ankle Lognormal Nakagami Gamma
(c) 4.5 GHz Single Tone
Fitting Stand Walk Jog
Back Weibull Weibull Gamma
Left Wrist Weibull Nakagami Weibull
Left Ankle Lognormal Weibull Weibull
Right Ankle Weibull Weibull Weibull

3.4 Second Order Statistical Characterization

In BANS, different human body motions, antenna positions and center frequencies will
result in shadow fading. And the received signal strength fluctuates extensively according
to the characteristics of these channels. Given a certain threshold, the performance of the
receiver is deteriorated due to the deep fading of channel, which will also give rise to a
higher error rate. The statistics of level crossing (fade) rate and fade duration are the other
two important parameters for designing medical sensors in BANs. Figure 11 describes

the basic concept and parameters related to the level crossing rate and fading duration.
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Figure 11: Second Order Statistics: Level-Crossing Rate and Fade Duration

3.4.1 Level Crossing Rate
The level crossing rate is defined as the average number of downward crossings of a
certain threshold T per second. For a Rayleigh fading envelop distribution, the level

crossing rate is defined as N (p) per second by

N(p) = V2mBppe ™" (18)
Where p = A/A, s 1s the ratio of the threshold level to the RMS amplitude of the fading

envelope and f3; = 0.5B) is the maximum Doppler spread of the signal.

For different human body motions, we could not derive a fixed equation for the level
crossing rate, since the envelope distributions are not determined. But we could obtain
the normalized level crossing rate N(p) versus normalized threshold p in decibel for
scenario set S1, where N(p) is normalized to the RMS value of the number of downward
crossings and p is normalized to the RMS value of the envelope of the signal, as shown
in fig.12. For low values of normalized threshold p below -4 dB of the standing motion,
we rarely have a fade crossing this threshold. As the normalized threshold p increases,
the number of fades crossing the threshold also increases until p is zeros, which means
that the actual threshold reaches the RMS value of the envelope of the signal. After the
threshold, the number of downward crossings decreases when the threshold is increased.

Up to a point, there is no fading below the threshold any more.

For the three human motions defined in S1, the jogging motion had the greatest variation

of channel fading with a peak value of 7.25 Hz. Communication links for walking has a
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less crossing rate where the maximum level crossing rate is 2.10 Hz, since it is not as
intense as jogging and the channel suffers from less shadow fading across the normalized
threshold p. As a result of relatively stable motion, the level crossing rate is the smallest
for standing, where the peak value is 1.25 Hz. Only a small number of fade crossings
happen for a certain normalized threshold p. There is a potential relationship between the

level crossing rate and Doppler spread caused by human body motions.
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Figure 12: Level Crossing Rate for Scenario Set S1

The summarized level crossing rate could be found in table 12 for all the possible
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scenarios described in the measurement setup. The peak value of level crossing rate keeps

increasing for standing, walking and jogging motions.

Table 12: Level Crossing Rate

Antenna Motion Maximum Level Maximum Level Maximum Level
Position Crossing Rate for Crossing Rate for Crossing Rate for
400MHz 2.25 GHz 4.5 GHz
Back Stand 1.1000 0.7000 1.2500
Walk 2.0000 3.5000 5.6000
Jog 5.4500 7.2000 8.6000
Left Wrist Stand 2.0000 2.1000 1.7500
Walk 2.5000 3.2000 4.3000
Jog 4.4500 6.1500 10.5000
Left Ankle Stand 1.9000 1.2500 1.9000
Walk 1.8000 2.1000 4.4000
Jog 3.4000 7.2500 10.8000
Right Ankle Stand 3.0500 1.4500 3.1000
Walk 1.5000 1.9000 5.2500
Jog 2.1500 7.6500 10.8500

3.4.2 Average Fade Duration

The average fade duration, also referred to as outage duration, is calculated as the average
time duration when fading is below a certain threshold. The average fade duration t(p)
for Rayleigh fading is defined as

2
ef -1

™) = mmy

(19)
Where p is the given threshold. Figure 13 explicitly gives the average fade duration
versus normalized threshold p for scenario set S1, which shows that the standing motion
has the fastest increasing speed compared with walking and jogging motions. For the
total measurement duration of 20 s, the averaged fade duration time is a non-decreasing
function of the normalized threshold. For a lower value of pg, there is almost no fading
duration below the normalized threshold. As the normalized threshold increases, the fade

duration keeps on rising until it reaches to the measurement time duration (20 s) as the

normalized threshold arrives at its peak amplitude.
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3.4.3 Outage Probability

For a given threshold, the outage probability is computed as the probability distribution
of fading when the signal power drops below this threshold. It is a measure of the quality
of transmission in a mobile radio channel. If the average number of downward crossings
for a normalized level is denoted as N(p) and the average fade duration is 7(p), then the

outage probability is calculated as

Prob(a < p) = 7(p) X N(p) (20)

And the percentage of time that the system can send information is given as

S=1-Prob{a<p}=1—-1(p) X N(p) (1)
IEEE 802.15.6 standard '®*! has proposed that the latency requirement is 125 ms for
medical applications and 250 ms for non-medical applications. In order to satisfy these
requirements, a higher normalized threshold, coming from Path Loss model is claimed to

maintain the throughput of the unstable channel in packet communications.

3.5 Doppler Spread Spectrum

It is well known from the analysis of electromagnetic signals that if there is a relative
motion between the source and the receiver, an apparent change will occur in frequency
between the source of a wave and the receiver of the wave. If either the source or the
receiver moves towards the other, the receiver will perceive a higher frequency. This is
because the receiver will receive a greater number of electromagnetic waves per second
and interpret the greater number of waves as a higher frequency. Conversely, if the
source and the receiver are moving apart, the receiver will receive a smaller number of
electromagnetic waves per second and will perceive a lower frequency. In both cases, the
frequency produced by the source will remain constant. The maximum Doppler

frequency shift is determined by the velocity of the movement v,, and the length of

propagation wave A = fi by

=0 (22)

where ¢ is the propagation velocity and v, is the transmitting frequency. When the
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transmitter is moving toward the receiver, the Doppler frequency shift f,,, would be
positive. On the other hand, f,,, would be negative if transmitter moves away from the
receiver. Hence, the maximum value of f;,, could be approximate from Doppler spread

BD of the on-body to on-body communication.

From the narrowband measurement results, we have the time domain response H(f_; t)
received from an unmodulated sine wave transmitted at 400 MHz, 2.25 GHz and 4.5 GHz
respectively. By design, each measurement is a sample of an ergodic process and
stationary. All the following analysis below assumes that the channel is wide-sense

stationary at a minimum [’

Applied a threshold of -10 dBm in the frequency domain, Doppler spread D(4) could be

derived from the Fourier transform of the time domain data H(f; t), where

D) = [17H(f; tye > tde (23)

A set of Doppler spreads for a specific scenario S1 = {{2.25 GHz}, {Stand, Walk, Jog},
{Left Ankle}, {Right Hip}} is shown in fsig.14, including both time domain response
H(f;; t) and corresponding response D (1) in frequency domain. The Doppler spreads for
standing, walking and jogging motions are approximately 0.5507 Hz, 4.0843 Hz and
10.8344 Hz for the communication link between left ankle and right hip at 2.25 GHz.

Amplitude [dB)
Amplitude [dB)

Doppler FrequencyiHz)

(a) Stand Still
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Figure 14: Time Domain and Frequency Domain Analysis of Scenario Set S1

For the on-body to on-body communication, Doppler spread varies approximately from
0.5 to 11 Hz for scenario set S1. Table 13 lists Doppler spreads for each scenario defined
in Sect.2.6.2. The conclusion drawn from table 13 is that the Doppler spread increases
approximately from 0.1 to 12 Hz for different antenna placement, different center
frequency and three human body movements. And as the transmission range which is
related to positions of TX antenna, Doppler spreads also rises in a small range when the
distance between RX and TX increases. Table 14 lists a comparison of Doppler spread
for Scenario Set S2, where S2 is defined as S2 = {{400 MHz, 2.25 GHz, 4.5 GHz},
{Walk}, {Left Ankle}, {Right Hip}}. For the transmission link from left ankle to right
hip of walking motion, the Doppler spread increases in a small range. But for all the

scenarios, the Doppler spread is not proportionally related to the center frequency.
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Table 13: Doppler Spread for All the Scenarios at 400 MHz, 2.25 GHz, 4.5 GHz

(a) Doppler Analysis for 400 MHz

Antenna Position Motion Doppler (Hz) RMS Doppler Coherence Time
(Hz) (ms)
Back Stand 0.4255 0.5802 209.8786
Walk 0.8594 1.0300 135.4084
Jog 2.5682 1.7671 71.4551
Left Wrist Stand 0.2753 0.4949 350.1076
Walk 2.9620 1.6181 109.1818
Jog 7.1952 2.5509 74.2856
Left Ankle Stand 0.1752 0.4532 688.4473
Walk 2.4906 1.4476 188.9173
Jog 7.1214 24516 47.2303
Right Ankle Stand 0.1001 0.4956 291.9244
Walk 2.2236 1.5050 150.6865
Jog 6.4080 2.5150 39.1484
(b) Doppler Analysis for 2.25 GHz
Antenna Position Motion Doppler (Hz) RMS Doppler Coherence Time
(Hz) (ms)
Back Stand 0.6383 0.7758 724.0871
Walk 5.2516 2.2093 123.2081
Jog 8.5041 2.7276 47.3489
Left Wrist Stand 0.5006 0.6975 234.4692
Walk 4.7885 2.0608 104.6887
Jog 12.0006 3.1149 40.6528
Left Ankle Stand 0.5507 0.7696 377.2509
Walk 3.5419 1.8789 124.6821
Jog 10.8344 3.0082 28.8768
Right Ankle Stand 1.3392 0.9833 1050.60
Walk 4.7997 2.0063 128.9503
Jog 11.5501 3.1837 38.4998
(c) Doppler Analysis for 4.5 GHz
Antenna Position Motion Doppler (Hz) RMS Doppler Coherence Time
(Hz) (ms)
Back Stand 0.4756 0.5856 474.8717
Walk 3.3000 1.6951 50.2929
Jog 5.3948 2.2459 26.2686
Left Wrist Stand 0.7259 0.8366 475.5905
Walk 3.7213 1.7641 72.9752
Jog 7.4471 2.6017 18.0017
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Left Ankle Stand 0.4255 0.6349 357.8102
Walk 4.0843 1.6861 90.0661

Jog 6.5477 2.6133 16.6652

Right Ankle Stand 0.3755 0.5616 390.0243
Walk 3.8277 1.7594 89.3603

Jog 7.3216 2.8870 13.9869

Table 14: Comparison of Doppler Spread for Scenario Set S2

Transmitter Placement Frequency Doppler Spread (Hz) RMS Doppler Bandwidth (Hz)
Left Ankle 400 MHz 2.4906 1.4476
2.25 GHz 3.5419 1.8789
4.5 GHz 4.0843 1.6861

3.6 RMS Doppler Spread
A more specific estimation of Doppler spread is the RMS Doppler bandwidth ") defined

by

1/2

i AZV(/l)dA] (24)

fn= [ [V(A)da
where V(1) is the Fourier transform of the complex auto-correlation function of H(f; t).
RMS Doppler bandwidth is proposed to describe Doppler shift by calculating the
weighted signal power rather than a simply overall width of the spectrum in a more

scientific method.

For the scenario set S, the RMS Doppler bandwidth changes in a range of 0.4—4 Hz,
where difference comes from various human body motions, center waveform frequency,
and antenna positions on the test subject. In table 13, for the standing still motion, RMS
Doppler bandwidth is always below one, which shows a concentrated distribution of
signal power. While for walking and jogging motions, RMS Doppler bandwidth is much
larger than that of standing still, since signal power is dispersedly distributed in the
frequency domain. Doppler spread spectrums in fig.14 have shown an example of power
distribution in frequency domain, where the Doppler Spread increases from (a) to (b) to
(c). For a scenario set S2, table 15 illustrated that RMS Doppler spread bandwidth
increases in a small range for the communication link from left ankle to right hip at

different center frequency. But the RMS Doppler spread does proportionally relate to the
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transmission center frequency.

3.7 Shape of Doppler Spread Spectrum

In the on-body to on-body channel, the transmitter and receiver could be either stationary
or mobile. The relative mobility will lead to different Doppler shapes in frequency
domain, where the “Bell-Shaped” Doppler spectrum are relative to center frequency and
human body motions. In this study, we obtained maximum likelihood estimates of
received signal strength in dB with respect to frequency variations of three curves, which

is used to characterize and model channels in past researches.

e Laplacian

F(fy=—"5+d (25)

b+cf?
where f is the sampling frequency.
e (Gaussian
F(f) =TIz  aexp (—=(fo — fO?/cD) (26)
this is an nth order Gaussian model, where f is the sampling frequency. We use
the 4-th order Gaussian curve as a candidate for the shape of Doppler spread
spectrum.
e Polynomial
F(f) =355 pif! 27)
This is an nth order Polynomial model, where f is the sampling frequency. We
use the 4-th order Polynomial curve as a candidate for the shape of Doppler
spread spectrum.
In order to compare goodness of the three curve fittings, we consider root mean square
error (RMSE) between the proposed curves and actual measured data. Given total
deviation of measured values with the fit to the measured values, we come to the
estimation of standard deviation of random component in measured data, and is defined

as

RMSE = \/MSE(@) = \/E((@ —0)2) (28)
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Where 8 is an estimator with respect to the measured data 8 leading to the least RMSE

values.

Figure 15 shows a sample of shape fittings for scenario S3 = {{2.25 GHz}, {Jog}, {Left
Ankle}, {Right Ankle}}. The 4th order Gaussian estimator has the minimum RMSE

1.2503, which shows a better performance than the Laplacian or Polynomial estimator.
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Figure 15: Shape of Doppler Spread Spectrum for Scenario Set S2

For all the considered scenarios, the estimated shape is shown in table 15 below.

Table 15: Estimate Doppler Spread Shape for Scenario Set S

(a) Center frequency at 400 MHz

Transmitter Movement Gaussian Polynomial Laplacian Best Fit
Placement (RMSE) (RMSE) (RMSE)

Back Stand 1.5556 2.7620 2.5246 Gaussian
Walk 1.5573 2.9677 3.4680 Gaussian

Jog 1.5623 2.7473 4.9783 Gaussian

Left Wrist Stand 1.5577 3.1874 2.5327 Gaussian
Walk 1.2879 3.3299 4.3967 Gaussian

Jog 1.5426 2.7538 3.9092 Gaussian

Left Ankle Stand 1.8447 2.6659 2.0905 Gaussian
Walk 1.3382 3.0904 4.2168 Gaussian
Jog 2.5206 3.2646 2.2528 Laplacian

Right Ankle Stand 1.4869 2.3832 1.7931 Gaussian
Walk 1.9683 3.3608 4.6428 Gaussian

Jog 1.5118 2.8692 4.9422 Gaussian
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(b) Center frequency at 2.25 GHz

Transmitter Movement Gaussian Polynomial Laplacian Best Fit
Placement
Back Stand 1.6717 2.8621 2.7583 Gaussian
Walk 1.3376 2.9252 3.0400 Gaussian
Jog 1.4709 2.7434 3.0424 Gaussian
Left Wrist Stand 1.0378 1.7610 2.1399 Gaussian
Walk 1.3275 4.0592 6.0163 Gaussian
Jog 15.9193 2.6757 7.1874 Polynomial
Left Ankle Stand 1.5800 2.6943 1.4931 Laplacian
Walk 1.0414 3.2636 1.0877 Gaussian
Jog 1.2503 2.7156 2.7462 Gaussian
Right Ankle Stand 0.9967 2.4638 2.9908 Gaussian
Walk 1.3204 4.0858 1.4053 Gaussian
Jog 1.6557 2.7096 5.1726 Gaussian
(c¢) Center frequency at 4.5 GHz
Transmitter Movement Gaussian Polynomial Laplacian Best Fit
Placement
Back Stand 1.5198 2.7898 2.2770 Gaussian
Walk 1.3888 2.9584 1.3737 Laplacian
Jog 1.5267 1.8955 2.6266 Gaussian
Left Wrist Stand 1.4376 2.5096 1.4731 Gaussian
Walk 1.3592 3.6857 1.3874 Gaussian
Jog 1.4725 1.5991 3.8102 Gaussian
Left Ankle Stand 1.5807 2.9347 2.1678 Gaussian
Walk 1.4257 3.4260 5.5908 Gaussian
Jog 1.4472 1.6969 2.9549 Gaussian
Right Ankle Stand 1.4753 2.7258 1.5158 Gaussian
Walk 1.6347 3.5181 6.1423 Gaussian
Jog 1.5364 1.6077 4.7368 Gaussian
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Comparing the RMSE for the Laplacian, Gaussian and Polynomial estimators, the 4th
order Gaussian function is a good candidate for the shape of the Doppler spread spectrum
of different human body movements. But it does not always perform better than

Laplacian and Polynomial estimators for several cases.

3.8 Coherence Time

Coherence time is the description of time dispersive nature of the channel in time
domain, equivalent to Doppler spread in frequency domain. It is actually a statistical
measurement of the time duration over which the channel impulse response is essentially
invariant. In other words, coherence time is the time duration over which two received
signal has a strong amplitude correlation. In a baseband transmission, a distortion will
occur when bandwidth of the signal is greater than the inverse of coherence time.

Coherence time and Doppler spread are inversely proportional to each other.

c

fm =1 (29)

where ¢ is a constant value. Channel coherence time is typically defined as the time
duration over which the normalized auto correlation coefficients of time domain data is

above 0.5, defined by

SN M (et m) —m it () -m )
Ir(n+m) | x|r ()|

p(m) = (30)

where m, is the mean value with %Z,’le(i) and [r(n)| = XN_{x(n) — m,}? The

correlation function for scenario S1 is shown in fig.16 below.
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Figure 16: Coherence Time for Scenario Set S1
Hence, the coherence time T, is 377.2509 ms for standing, 124.6821 ms for walking and

28.8768 ms for jogging, which means that a maximum symbol transmission rate 2 of

[

2.65 Hz for standing, 8.02 Hz for walking and 34.63 Hz for jogging is required to avoid
distortion from frequency dispersion for the communication link from left ankle to right
hip at 2.25 GHz in digital communication system. Table 13 shows the summary of
coherence for all the possible communication links at MICS, ISM and UWB bands. As
the intensity of human body movements increases, the coherence time will decrease
sharply, since the channel suffers from greater fading and invariant in a shorter duration.
The coherence time is usually below 90 ms for jogging motion, around 100 ms for

walking motion and more than 200 ms for standing motion.
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4 Activity Classification with Inertial Sensors

4.1 Sensors on Smartphones

During the past several decades, tremendous development of the microelectronics has
enabled sensors and mobile devices with unprecedented characteristics. These small, high
computation and low cost sensors interact with people in a sensor pervasive environment.
Smartphones with built-in sensors could continuously monitor location, motion and
various environmental conditions. These mechanical sensors would provide relatively
accurate data. The location sensors report the physical location of the device, including
orientation sensors and magnetometers. The motion sensors monitor device movements,
e.g. acceleration, forces and gravity. The environmental sensors measure various
environmental parameters, such as pressure, illumination and humidity.

In this thesis, we use four Samsung Exhibit II as the device to collect data and model the
human body motion offline. This Samsung Exhibit II has an Android operating system
with a 2.3.3 API level. There are more than seven build-in sensors: GP2A Proximity
Sensor, AK8975 Magnetic Field Sensor, AK8975 Orientation sensor, BMA222
Acceleration Sensor, GP2A Light Sensor, etc. In order to differentiate human body
motions standing, walking and jogging, we use the mean and variance of the linear
accelerometer, orientation and gravity as the features to the neural networks along with
Received Signal Strength features discussed in chap.3. Figure 17 shows the coordinate

system (relative to a device) that is used as the description of sensor’s coordinate system.

y
4

A J
=

Figure 17: Coordinate System that is used by the Android Smartphones

We extracted features from the accelerometer and orientation sensor in Samsung Exhibit

I1. The accelerometer sensor measures the acceleration force in m/s? along x axis, y axis
b
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and z axis, including the gravity of the earth. The orientation sensor is highly related to
the physical of the device, which could monitor the degrees of rotation relative to the

three physical axes.
4.2 Behavior of Sensors

4.2.1 Data Collection

In order to understand the performance of built-in sensors on the smartphone, we placed
the smartphone on the desktop to analyze the stability of accelerometer and orientation
sensors. The accelerometer provides the acceleration along each device axis, including
gravity. The linear acceleration is calculated by the following relationship

linear acceleration = acceleration — acceleration due to gravity

(31
We use a sliding window with a size of 2048 samples. The time domain data of
accelerometer sensor and orientation sensor for three axes are shown in fig.18 and fig.19
respectively. And the statistical results are shown in table 16 for accelerometer sensor and

table 17 for orientation sensor.

Table 16: Stability of Accelerometer Sensor

Coordination X Y V4
Mean 5.2437e-04 -3.2102e-04 8.5280e-04
Variance 0.0057 0.0012 0.0056
Table 17: Stability of Orientation Sensor
Coordination X Y V4
Mean 16.0985 0.9146 1.2102
Variance 0.0778 0.0409 0.1869
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Figure 18: Time Domain data of accelerometer sensor
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Figure 19: Time Domain data of orientation sensor

Instability of these mechanical sensors introduces bias into measurement, and is required
to be eliminated from measurement of human body movements.
Similar as the measurement setup discussed in chapter 2, four Android phones are

attached to back, left wrist, left ankle and right ankle on the surface of human body,
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which is the same placement as RF sensors. Real Time data of three different human
body movements (standing, walking and jogging) are collected in a three-minute interval.
The first 10 samples and the last 10 samples are discarded to reduce the error. Ten sets of

data are collected, processed and evaluated for activity classification.

4.2.2 Mean and Variance

Based on the collected data, statistical analysis of accelerometer and orientation sensors
are discussed in this part. Mean and variance of different human body motions are
important features to distinguish between three possible motions. The DC component is
the mean acceleration and orientation values of the signal over the sampling window. The
variance of acceleration and orientation values is reflective of the intensity of body

movements.

4.2.3 Energy

The energy '°” feature is defined as the sum of the discrete Fast Fourier Transformation
(FFT) component magnitudes of the signal, normalized by the number of samples.
Additionally, the DC component of the signal is excluded in the calculation. The energy
feature is defined as

E = Ziz FFTG)| (31)

n

where n is the number of samples and x; is the ith signal amplitude.

4.2.4 Frequency-domain entropy

The frequency-domain entropy '*’! measures the information of the uncertainty associated
with each sample in the data stream. It represents the expected value of information
contained in the discrete FFT component of the reported signal. The frequency-domain

entropy is calculated as the entropy of the normalized signal strength.

1
HX) =Y P(x)I(x;) = Yi-1 P(x;) * log oD (32)
where P(x;) = % And the DC component should also be excluded from this
i=1 i

calculation.
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4.3 Activity Classification

The human body activity classification has tremendous application in medical,
entertainment, security, etc. For instance, patients with obesity or diabetes are often
required to follow an amount of regular exercises as part of their treatment; patients with
heart attack diseases need to be remotely monitored in case of accident. These could be
achieved by differentiating and tracking a variety of human body movement. The
recognition of human activities could be approached with the assistance of wearable
sensors, including RF and inertial sensors. Extracted features are mostly related to the
user’s movements (e.g. accelerometers), environmental variables (e.g. temperature) or
physiological signals (e.g. ECG). With body mounted accelerometers, human body
activities could be classified "* 7!, As the emerging of smart devices, a variety of activity
recognition applications are evolved for smartphones ["*%\. Accurately classify activities

would also enhance the indoor geolocation '),

4.3.1 Activity Recognition Architecture and Methods

Activity classification problem could be solved with machine learning algorithms, which
requires training stage and evaluation stage. The training stage generates an activity
recognition model from the attributes extracted from the measured time series datasets.
The evaluation stage is to test unknown datasets with the prior trained learning model.

The architecture for the activity classification is shown in fig.20 below.

Data Collection

RF Sensors,
Inertial Sensors

Training Data Set

Feature Extraction

Time Domain Features,
Frequency Domain
Features

1L

Learning Algorithms:
Support Vector Machine,
Probabilistic Neural

Network,
Nearest Neighbor

iL Test Data Set

Performance
Evaluation

Figure 20: Activity Classification Architecture
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In order to achieve high classification accuracy, several issues need to be carefully

considered in the algorithm design.

1))

2)

3)

Target activity types. There are a lot of activity types required to classify with
each other: ambulation activities (e.g. walking, jogging, climbing stairs,
descending stairs), transportation movements (e.g. Riding a bus, cycling, driving),
daily activities (e.g. eating, drinking, working, watching, reading, washing), etc.
The complexity and intensity of a variety of activities would introduce different
pattern recognition problem. Moreover, the overlapped activities would bring
more difficulty into the activity classification problem. In the following
discussion, we assume each body activity is separated from others.

Feature selection. With wearable RF and inertial sensors, signal strength
attributes, motion attributes, location, environmental attributes could be measured
and processed for the learning algorithms. Features in the processed dataset
should be carefully extracted to reduce redundancy and irrelevancy that might
negatively affect the recognition accuracy.

Learning algorithms. In order to discover classification pattern, machine learning
algorithms are developed and evaluated to describe, analyze and predict data. The
learning algorithms are divided into three categories: supervised learning,
unsupervised learning and semi-supervised learning. The supervised learning
algorithms include Decision Tree classifier, Bayesian Networks, Neural Network,
Support Vector Machines, Fuzzy Logic method, Regression methods, Hidden
Markov models, working with labeled data. The unsupervised learning method
deals with unlabeled data. But unsupervised learning might be hard to be used to
differentiate activities. Semi-supervised learning algorithm is developed by

allowing part of the data to be unlabeled.

A variety of activity classification systems has been researched, developed and

evaluated in the past several decades. Maurer presented “eWatch” ) recognition

system that embeds accelerometer, light sensor, thermometer and microphone sensor

inside. A C4.5 Decision Tree is applied to the time domain features to achieve an

accuracy up to 92.5% for six ambulation activities. “Cosar” framework **! for

activity recognition is proposed by Daniele Riboni where real-time data are collected
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with two accelerometers and GPS sensor under the Android platform. Statistical and
ontological reasoning are applied to achieve an overall accuracy around 93%.

“ActiServ” 78

made use of a fuzzy inference system to classify ambulation with
built-in accelerometer in mobile phones. Yet it would sacrifice long runtime duration
with a top accuracy level. A Hidden Markov Model (HMM) ¥ to recognize the body
activity is derived to predict activity, based on the measured angular velocity and 3D

deviation of the acceleration signals.

4.3.2 Feature Extraction

The variance, energy and entropy of time domain data extracted from the accelerometer
and orientation sensor are analyzed to provide as features for activity classification.
Moreover, the path loss range, variance of path loss, the maximum level crossing rate,
Doppler spread, RMS Doppler spread and coherence time are also applied to classify

three human body motions.

4.3.3 Backpropagation Network
Backpropagation was created by generalizing the Widrow-Hoff learning rule to multiple-
layer networks and nonlinear differentiable transfer functions. The scale conjugate

[68] is applied to the train data set to generate a function approximate to

gradient algorithm
learn the behavior of backpropagation network. This algorithm, designed to avoid line
search, is a combination of the conjugate gradient approach and model-trust region
approach.

The propagation network architecture is shown in the fig.21 below. The training data set
goes into Input. Weight and bias are iteratively adjusted to minimize the mean square

error for feedforward networks - the average squared error between the network outputs

and the target outputs.
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Input

The comparison of backpropagation algorithm on different data sets is shown in table 18

below, where the RF sensors can detect human body motions with an accuracy of

Hidden Layer

Output Layer

~
b

\_

> output

/

Figure 21: Propagation Network Architecture

96.67%, more accurate than assisted with accelerometer and orientation sensor.

Table 18: Comparison of Different Machine Learning Algorithms

Sensors BP PNN kNN SVM
Inertial 75% 83.3% 91.7% 83.3%
RF 96.67% 75% 83.3% 96.67%
Inertial & RF 96.67% 83.3% 91.7% 91.7%

The performance of validation is shown in fig.22 below.

. BestValidation Performance is 0.050453 at epoch 12 . BestValidation Performance is 0.046218 at epoch 11
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4.3.4 Probabilistic Neural Network (PNN)

Artificial Intelligence has gained great prominence in the area of pattern recognition.
Probabilistic Neural Network (PNN) % %! was first proposed by Donald F. Specht in
1988 could be used for the human body activity classification problem. Fig.23 shows the
neural network architecture for classification of input patterns X into two categories. The
input unit does not perform any computation functionalities. It simply feeds input data to
the pattern units. In the pattern units, the exponentiation activation function is used to

replace the commonly used sigmoid activation function for back-propagation

Output
Unit

Summation

Unit

Pattern
Unit

Input
Unit

Figure 23: Neural Network Architecture for Classification

Each pattern neuron forms a product of the input vector x;:

_ (x_xai)T(x_xai)

1
Pai = Grpar €P -7 ] (33)

Where x,; is the ith training vector from category a, d is the dimension of the input
feature vector, o is the smooth factor. Smooth factors would have different effects on the
estimated PDF. The summation unit would accumulate and average the inputs from the

pattern units which correspond to the same activity class.

1
fa= ;Zl Pai (34)

T m
Where m denotes the number of training vectors in category a. Assuming an equal priori
probability for each category, the classification of each pattern vector is made according

to the Bayes’ Rule:
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c(x) = argmax{f,(x)} a=1,2,...,n (35)
The output units represent the results of activity classification.
For the three target human body motions, the PNN algorithm assisted with RF sensors
and inertial sensors provides an accuracy of 83.3%. Potentially, the detection accuracy of
PNN algorithm would increase if more distinguished features are provided, since this
algorithm essentially calculates the relevance between the target data set and the training

data set by the kernel function.

4.3.5 k-Nearest Neighbor (k-NN)
The k -nearest neighbor algorithm is a lazy learning approach to solve activity
classification problem based on the closed training sets in the feature space. The k-
nearest neighbor algorithm is among the simplest of all machine learning algorithms: an
object is assigned to the class most common among its k nearest neighbors. This
algorithm finds the estimated class with local optimality. Therefore it would require large
storage space and intensive computation to achieve high performance.
Like other learning algorithms, a decision boundary is computed through the training
stage where the training sets are vectors in a multidimensional feature space labeled
individually. In the classification procedure, an unlabeled vector is classified by assigning
the label which is most frequently among k training sets nearest to the query point, where
k is a user-defined constant.
The training set is defined as:

X = {X1,X2, ., Xp}
Each x; is a vector containing a features, x; = {x;;, X5;, ..., Xn; }- The Euclidean distance
is used as the distance metric to find the nearest point from training set x to the unlabeled

vector .

Ay, %) =y Zieza e = *u)? (36)
The count of each category k is accumulated as c(k). Therefore, the unlabeled vector is
classified by solving argmax(c(x;)) subject to Y-, c(x;) = k.
A 4th order nearest neighbor approach is applied to classify the three human body
motions, the accuracy with inertial sensors is 91.7%, higher than that with RF sensors.

The reason lies in that only six features are provided by the RF sensors, far less than the
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72 features with inertial sensors. More features would provide relatively accurate

estimation of Euclidean distance defined in eq.41.

4.3.6 Support Vector Machine (SVM)
Support Vector Machine is commonly used for activity classification problem. In order to
obtain an “optimal” boundary (the most distant hyperplane from both sets), a kernel
function is used to project data sets to higher dimensional space with the aim of finding a
linear decision boundary to partition the data.
The boundary hyperplane is expressed as

wix+b=0 (37)
where w is the weight coefficient vector and b is a bias term. The optimal boundary
maximizes the minimum of the distance between the training vector and the boundary

and is formalized to a optimization problem as

minimize wlw
subjectto y;(w'x; +b) > 1 (38)
(-1, if x; belong to one set
where y; = {1, if x; belong to the other set’

This optimization problem could be achieved by Lagrange’s method of indeterminate
coefficients. The Lagrange’s equation is defined as

Lw,b,a;) = %WTW —Yia;lyiw'x; +b) — 1] = _%ZiZj a;a;y; y;xi x; + ¥

(39)

where a; > 0 is the indeterminate coefficients. Solve this conditional optimization
problem with derivative of L(w, b, a;) , we could reduce it to a quadratic programming
problem which finds a; to maximize L(w,b,q;) = —%Zizj a;a;y; yix; xp + X a;
subjectto ); a;y; = 0,a; = 0.

Kernel method is used to find the nonlinear boundary by transformation the vector space
to a higher dimensional space, so that a nonlinear separable data could be linearly
separable after transformation. Let ® denotes the transformation to higher dimensional
space. The kernel function is defined to the distance in transformed space is related to the
original distance in the low dimensional spaces.

K(x,x)= @ (x)Td(x" (40)
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In this thesis, we use the Gaussian kernel function.

|lx—x]|?

K(x,x") = exp (— ) (41)

a2
However, unlike previous three approaches, this method can only classify the data set
into two categories. We organize the overall data into static motion composed of standing
scenario and dynamic motion composed of walking and jogging scenarios. Applied the
SVM algorithms, the accuracy can achieve 96.67% with RF characteristics. Yet, an
accuracy of 83.3% is obtained with only accelerometer and orientation sensor. Future
work needs to classify human body motion into more than two categories with improved

algorithms.
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5 Conclusion and Future Work

5.1 Conclusion

This thesis is concerned with the continuous monitoring of human body movements, with
a view toward a variety of potential health-care applications. The physical
implementations of such monitoring systems will utilize wireless Body Area Networks
(BANS), which in turn implies communication links (channels) between sensors and RF
elements in each such network. In this thesis, the propagation characteristics of channels
are measured, modeled and evaluated with body mounted sensors. The thesis investigated
probabilistic models that are derived for wireless communication and human body
activity classification. Using a Vector Network Analyzer, three human body motions
were measured at MICS band, ISM band and UWB band: standing, walking and jogging.
The body mounted sensors were placed at the subject’s back, left wrist, left ankle, right
ankle and right hip, intended to track the subject’s breathing, as well as movements of the

hands and feet.

The statistical distribution of received signal strength was investigated with six common
distributions: Normal distribution, Gamma distribution, Rayleigh distribution, Weibull
distribution, Nakagami-m distribution and Lognormal distribution. Evaluated using the
negative log likelihood of the received signal strength, all the measured scenarios were
fitted into one of the candidate distributions. The results indicate that the Rayleigh
distribution is not suitable for describing any of the three human body movements.
Generally, the Weibull distribution is found to be a suitable candidate for all three body
motions. But for better accuracy, the Lognormal distribution provides a better fit for
standing scenarios in several cases, while the Nakagami-m distribution fits better for
walking motion in several cases and the Gamma distribution fits better in a few cases for

jogging scenarios.

Level crossing rate and average fading duration are important parameters typically used
to describe channel fading characteristics, especially the fluctuation of received signal
strength. Doppler spread represents the relative motion between the transmitter and the

receiver. For the standing scenario, the Doppler spread is found to be always below 1 Hz.
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For the walking scenario, the Doppler spread is greater than that for the standing
scenario, specifically, around 3 Hz. The jogging scenario will introduce maximum
Doppler spread, which is greater than 6 Hz. The coherence time is also analyzed to
describe the time dispersive nature of the channel. It is inversely proportional to the
Doppler spread. The coherence time is usually below 90 ms for jogging scenarios,
around 100 ms for walking scenarios and more than 200 ms for standing scenarios.
Moreover, the shape of the Doppler spectrum is described with a Laplacian model, 4th
order Gaussian model or Polynomial model. By comparing observed RMSE for each of
these candidate models, it is found that most of the Doppler spread shapes could be well
described with a 4th Gaussian model. However, several cases could also be described

with a Laplacian model or a Polynomial model.

The inertial sensors, including accelerometer and orientation sensor inside smart devices,
are also used to characterize the three human body motions. Mean, variance, energy and
entropy are extracted as features to classify different human body motions. The
quantitative characteristics of channel modeling for different human body motions could
also be applied to solving the activity classification problem. In the thesis, the back
propagation, probabilistic neural network, k -Nearest Neighbor and support vector
machine algorithm are applied to differentiate human body activities. The detection

accuracy can be improved with both RF sensors and inertial sensors.

5.2 Future Work

In order to obtain more accurate channel models, more empirical data must be gathered
and evaluated. More extensive data collection campaigns would enable more detailed
characterization of the BAN channels and the features that can be utilized in machine
learning algorithms. Moreover, the future work should also address the design of
algorithms for activity classification, including study of a wider range of activity types,

such as sitting, falling down, standing up, eating, and drinking.
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7 Appendix

7.1 Appendix I: Time Domain and Frequency Domain Data
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Figure 24: Time Domain and Frequency Domain, Back to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 25: Time Domain and Frequency Domain, Left Wrist to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 26: Time Domain and Frequency Domain, Left Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 27: Time Domain and Frequency Domain, Right Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 28: Time Domain and Frequency Domain, Back to Right Hip, Standing,
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Figure 29: Time Domain and Frequency Domain, Left Wrist to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 30: Time Domain and Frequency Domain, Left Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 31: Time Domain and Frequency Domain, Right Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 32: Time Domain and Frequency Domain, Back to Right Hip, Standing, Walking, Jogging, 4.5 GHz

82



Croppier in Teme Domain

Doppler in Freq Doman
s

Doppéer in Time Comain

Dopplor in Teme Domain

Doppler in Freq Doman
[}

Doppier in Freq Doman
15 0 I
a2 0
| 5
425 : $
- _ 10 s,
€ 43 g.m & g
=185 &
% s 1 £ f - -
& 20 g
E o MII Ex g H
a5t 25 o %
a5 sopt o | 70 &
] 0 FU ] [ 50 ] 0 0 o E] 5 0 FL ] [
ame (3) Doppler FrequencylHz) e {5 Coppler FroguencyiHz) ama () Doppler FrequencylHz)

Figure 33: Time Domain and Frequency Domain, Left Wrist to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 35: Time Domain and Frequency Domain, Right Ankle to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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7.2 Appendix II: Statistical Distribution
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Figure 42: Statistical Distribution, Left Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 44: Statistical Distribution, Back to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 46: Statistical Distribution, Left Ankle to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Appendix lll: Level Crossing Rate

Level Crossing Rate versus normalized threshold
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Figure 49: Level Crossing Rate, Left Wrist to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 50: Level Crossing Rate, Left Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz

Level Crousing Reate virsus momakzed thresold Level Cransing Rate versus nomalized thrashold
Liwel Ceonning Rate versus nommaized Theashold 25

Comsany Rate

02 01

0z 03 T a—— ] g 0 ] 0 5
Themshokd (48}

0 0 2
Thewshold (45) Theashald (4E)

Figure 51: Level Crossing Rate, Right Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 52: Level Crossing Rate, Back to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 53: Level Crossing Rate, Left Wrist to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 54: Level Crossing Rate, Left Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 55: Level Crossing Rate, Right Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 56: Level Crossing Rate, Back to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 57: Level Crossing Rate, Left Wrist to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 58: Level Crossing Rate, Left Ankle to Right Hip, Standing, Walking, Jogging, 4.5 GHz

Thrashon (o)

Level Crussing Reate versus mommakized thiesbold

Livil Crosting Ratd weius nomakzed Borsheld

Loved Crasuing Fate wersus nermakied trasheld

] 2
5
4

2 e

f3 g
2
1

E] 1 3 25 .20 W15 0 5 10 -20 ES -10 5 ] 5 10

=10 <5 &l
Thesshald (45) Theasheld {45)

Figure 59: Level Crossing Rate, Right Ankle to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Appendix IV: Averaged Fade Duration

Aorerage Fade Duration versus nommalized teeshiold
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Figure 60: Averaged Fade Duration, Back to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 61: Averaged Fade Duration, Left Wrist to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 62: Averaged Fade Duration, Left Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 63: Averaged Fade Duration, Right Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 64: Averaged Fade Duration, Back to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 65: Averaged Fade Duration, Left Wrist to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 66: Averaged Fade Duration, Left Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 67: Averaged Fade Duration, Right Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 68: Averaged Fade Duration, Back to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 69: Averaged Fade Duration, Left Wrist to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 70: Averaged Fade Duration, Left Ankle to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 71: Averaged Fade Duration, Right Ankle to Right Hip
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Appendix V: Coherence Time
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Figure 72: Coherence Time, Back to Ri
Cobwerence Time Coberence Time
1 1
09
09| 09
o
[iE:] 0E =
- g0l
s07 07 &=
4 3. 2os
& 06| g 0e 8 .
B 05 S 08 7 04
H £ g
B E Hos
@ 04 % 04 E
R .Ez 02 203
02| 02 0z
01 01 01
10 -5 0 5 10 1] 5 0 fia
delay 5] delay (5]
Figure 73: Coherence Time, Left Wrist to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 74: Coherence Time, Left Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 75: Coherence Time, Right Ankle to Right Hip, Standing, Walking, Jogging, 400 MHz
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Figure 76: Coherence Time, Back to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 77: Coherence Time, Left Wrist to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 78: Coherence Time, Left Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 79: Coherence Time, Right Ankle to Right Hip, Standing, Walking, Jogging, 2.25 GHz
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Figure 80: Coherence Time, Back to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 81: Coherence Time, Left Wrist to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 82: Coherence Time, Left Ankle to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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Figure 83: Coherence Time, Right Ankle to Right Hip, Standing, Walking, Jogging, 4.5 GHz
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