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Abstract - Localization inside the human body using radio 

frequency (RF) transmission is gaining importance in a 

number of applications such as Capsule Endoscopy.   The 

accuracy of RF localization depends on the technology adopted 

for this purpose.  The two most common RF localization 

technologies use received signal strength (RSS) and time-of-

arrival (TOA).  This paper presents a comparison of the 

accuracy of TOA and RSS based localization inside human 

tissue.    Analysis of the propagation of radio waves inside the 

human body is extremely challenging and computationally 

intensive.  We use our proprietary finite difference time 

domain (FDTD) technique algorithm reported in [1] to 

simulate waveform transmissions inside the human body, 

which is almost 60 times faster than commercially available 

solvers used for similar purposes.   The RSS and TOA of the 

waveforms are extracted for localization and the accuracies of 

the two methods are compared.   The accuracy of each 

technique is compared with traditional CRLB commonly used 

for calculation of bounds for the performance of localization 

techniques.  

 

I. INTRODUCTION AND RELATED WORK 

In the past decade miniaturization and declining costs of 

semiconductor devices have allowed design of small, low-

cost computing and wireless communication devices. These 

are used as sensors in a variety of popular wireless 

networking applications and this trend is expected to 

continue in the next two decades. One of the most 

promising areas of economic growth associated with this 

industry is being termed wireless Body Area Networks 

(BAN) or Body Sensor Networks (BSN). These networks 

are expected to connect wearable and implantable sensory 

nodes together and with the Internet as part of the emerging 

“Internet of Things” These networks will support numerous 

applications ranging from traditional externally mounted 

temperature meters or implanted pacemakers to emerging 

blood pressure sensors, eye pressure sensors for glaucoma, 

and smart pills for precision drug delivery. A number of 

technical challenges regarding size and cost, energy 

requirements, and wireless communication technology are 

under investigation and at the core of these investigations is 

the importance of understanding radio propagation in and 

around the human body.  

 

In January 2003, the Federal Communication Commission 

(FCC) defined a standard for medical implant 

communication, allowing two-way communication between 

implants in a frequency band at 402-405 MHz with a 

maximum signal bandwidth of 300 kHz. This band is called 

the Medical Implant Communication Services (MICS) band. 

The  MedRadio band that was released in Sep 4, 2009 to 

extend MICS to 401-406MHz and the IEEE 802.15.6 

Working Group was formed to address standardization of 

these emerging technologies. As part of its deliberations, the 

IEEE 802.15.6 Working Group defines the models for 

characteristics of the medium for wearable and implanted 

sensor networks. 

 

Recently, Wireless Capsule Endoscopy (WCE) has become 

a very popular method for diagnosis of the human 

gastrointestinal (GI) tract. The technique is non-invasive 

and more precise, portable and personal as compared with 

traditional scope-based endoscopy. Capsule Localization 

plays a crucial role in the process of diagnosis and follow up 

interventions since doctors need to know the position and 

orientation of the capsule when images are collected. 

Various technologies for localization of the capsule have 

been explored in feasibility studies. [2] 

 

The human body is not an ideal medium for RF wave 

transmission. It is partially conductive and consists of 

materials of different dielectric constants, thicknesses, and 

characteristic impedances. Therefore, depending on the 

frequency of operation, the human body can exhibit high 

power absorption, central frequency shift, and radiation 

pattern disruption. The absorption effects vary in magnitude 

with both frequency of the applied field and the 

characteristics of the tissue. The shadowing should be 

considered for stationary and non-stationary position of 

body. Because of multipath reflections, the channel response 

of a BAN channel resembles a series of pulses. In practice 

the number of pulses that can be distinguished is very large 

and depends on the time resolution of the measurement 

system. The power delay profile of the channel is an average 

power of the signal as a function of the delay with respect to 

the first arrival path. [3] 
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II. INTRODUCTION TO FDTD 

The lumped port model in FDTD, used in our sensor design, 

is shown in Figure 1 [1]. It occupies one unit cell. The 

generator circuit includes the open gap antenna feed with 

the electric field ),,,(
eeez

zyxtE , which is updated based 

on the Maxwell equations in free space. We apply KVL to 

loop 1 as indicated in Figure 1. This yield:  
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Figure 1 FDTD port model corresponding to an excitation source  
 

Solving Equation (1) for the current results in 
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The FDTD version of Equation (2) becomes  
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where k, m, p are grid-related integers and n is discrete time. 

This yields a numerically stable algorithm for arbitrary 

positive resistance values. Using Ampere's law with an 

impressed current source from Equation (3) one has the 

fully explicit formulation for the source 
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                                                                    (5)   

with zyx D=D=D=D  being the unit cell size. Equation 

(3) gives us the generator current in the time domain. For 

the receiver, Equations (3) – (5) again apply, but with the 

voltage source set equal to zero. The receiver voltage is thus 

given by  
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The transmitted and received powers are found in the same 

fashion. 

 

III. TOA BASED TECHNIQUES AND SIMULATION 

The human body channel suffers from severe multipath 

propagation and heavy shadow fading conditions so that 

measurements for localization are far from accurate in many 

instances. TOA and received signal strength (RSS) 

estimation are therefore susceptible to large errors due to 

undesirable multipath conditions. To accurately estimate 

TOA in indoor areas, we need to resort to different 

frequencies of operation and more complex signaling 

formats and signal processing techniques that can resolve 

the problems. The behavior of a TOA sensor in human body 

multipath propagation is highly sensitive to the bandwidth 

of the sensor [2]. In practice, bandwidth is limited, and the 

received signal comprise a number of pulses whose 

amplitudes and arrival times are the same as impulses but 

they are shaped pulse. The superposition of all these pulse 

shapes forms the received signal, which we refer to as the 

channel profile. A common practice is to estimate the 

location of the direct path (DP) as the location of the peak of 

the first path that is the estimated TOA. In a single path 

environment, the actual expected and the estimated direct 

paths are the same.  In multipath conditions, however, the 

peak of the channel profile gets shifted from the expected 

TOA, resulting in a TOA estimation error caused by the 

multipath condition. We refer to the distance error caused 

by erroneous estimate of the TOA as the distance 

measurement error. For a given multipath condition we 

expect that as we increase the bandwidth the distance 

measurement error becomes smaller. The UWB systems, 

which exploit bandwidths in excess of 1GHz, have attracted 

considerable attentions in indoor areas as a means of 

measuring accurate TOA for indoor geolocation 

applications cannot be used around the human body due to 

the FCC frequency limitations mentioned in the first 

section. However for the sake of research, we have used 

higher bandwidth pulses which may have higher frequency 

content.  This is just to check whether TOA can be used as a 

good measure for distances between two sensors in and 

around the human body. The input pulse used is a Hanning 

pulse to match it with the window used in the Inverse 

Fourier Transform of the data taken from the network 

analyzer being used in the lab for real measurements.  

 

Figure 2 shows an FDTD simulation in MATLAB. This 

figure shows electric field distribution around the human 

body model with the transmitter and receiver sensors at 

positions and a and b respectively, which are 5 cm apart. As 

shown in the figure (right bottom), the TOA of the  “first 
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path”  arrives at 0.2277 ns, which roughly translates to 6.83 

cm, i.e. a distance measurement error of 1.83 cm. Notice, 

also, on the right side that the actual sensors for the 

simulation are not visible. This is because we tried to model 

a point source (with one FDTD cell) instead of a dipole 

antenna to eliminate the effects that maybe caused by 

impedance matching. However, it is not possible to model a 

perfect point (soft) source in MATLAB using FDTD, and 

that is why we can see the dip after the pulse is received. 

But if we plot the normalized power received, the negative 

region of that plot will be eliminated when the voltage is 

squared. 

 
 

Figure 2 Left: Map of where the sensors were placed; Right: Transmitted (top) and received (bottom) voltages vs. time 

 

IV. COMPARISON BETWEEN TOA RESULTS AND 

PUBLISHED PATH-LOSS MODELS USING RSS 

A number of such simulations were carried out with the 

transmitter kept at position a and the position of the receiver 

was varied from positions b to j. One such simulation was 

run where the position of the transmitter was at d and the 

receiver was kept at position e. The received pulse from this 

simulation is shown in Figure 3. This verifies the multipath 

effect due to the waves traveling in different media. This is 

because while the other simulations were performed with 

both the sensors inside the homogenous body model and the 

waves did not have to travel outside that body, there weren’t 

any detected second or third paths, but since in this 

simulation there was a change of mediums between the 

sensors, we can see more than one paths at the receiver. 

 
Figure 3: Received pulse (V) with transmitter and receiver sensors at 

positions d and e respectively. 

 

All these simulations were then used to plot a distance vs. 

TOA plot to assess deviations of the plotted points from a 

straight line representing the ideal TOA for each distance. 

Figure 4 shows this plot. 
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Figure 4: Time of Arrival vs. distance for various sensor positions 

 

This plot was then compared to a plot of the same distance 

range obtained from the channel model described by the 

NIST in one of their papers that used FEM for path-loss 

modeling [4]. The model as shown in the paper is shown in 

Equation (7) and Table I, where σs is the variance of the 

normal random variable S. 

 

   (7) 

 

 
 

The plot obtained from this model is shown in Figure 4. 

Figure 5: Plot obtained from the path-loss model in [4] 

 

The standard deviation per dB of the Path-loss model came 

out to be 15.575/50 = 0.3115. While, the standard deviation 

per ns of the TOA model came out to be 0.361004/1.4 = 

0.25786. Hence, for now, the Path-loss model seems to be 

more accurate. More detailed simulations are underway to 

improve the accuracy of the TOA model. 

 

To estimate the distance from the TOA plot shown in Fig. 4, 

we used Equation (8) [5]. 

 

    (8) 

 

 

From the slope of the TOA vs. distance line, the εr  came out 

to be 1.336. This value was also used to estimate the  

measured value for a distance of 5 cm between the sensors, 

mentioned in section II.  Figure 6 shows the distance 

measurement error plot obtained from the simulations 

carried out. It can be seen that the distance measurement 

error (given in millimeters) increases linearly with distance. 

 

 
Figure 6: Distance Measurement Error from TOA for each sensor position 

 

V. CRLB AND RANGING ACCURACY OF TOA VS. 

RSS 

Another metric to compare the accuracy of TOA and RSS 

based localization methods is their respective Cramer-Rao 

Lower Bounds (CRLB) [6]. The CRLB of a deterministic 

parameter expresses a lower bound on the variance of its 

estimators. The CRLB on the variance of the ranging error 

for TOA systems is given by: 
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where T is the observation time, SNR is the Signal-To-

Noise-Ratio,  f0 is the center frequency of operation and W 

is the bandwidth of the system.  For the operating 

frequency, bandwidth and SNR used in  GPS systems this 

bound shows us that accuracies around several meters is 

achievable if we can wait for a few minutes.   If we want to 

extend this technology to the human body we have three 

challenges (1) we need more precision to identify objects  

inside the body (2) we need to cope with the additional path 

loss to into the tissue within reasonable measurement times 

(3) we need algorithms to cope with possible multipath 

conditions. 
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In the case of RSS, the CRLB of the ranging error, using 

Equation (7) to relate the distance to the power, is given by:  

 
22
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³     (10) 

 

in which  
sh

s is the standard deviation of the shadow 

fading.   The distance power gradient (α) would greatly vary 

for different parts of the human tissue as already shown in 

Figure 5. Also, using Equation 10, the distance 

measurement error for RSS comes to the order of the 

distance between the transmitter and receiver, which would 

not be acceptable for the millimeter level accuracy required 

inside the human body. 

 

To check this claim, we plotted the RSS from our 

simulations for each of the sensor positions shown in Figure 

2. This plot is shown in Figure 7, and the α obtained from 

this plot came out to be 4.59, which is comparable to the 

model in Table I. 

 

 
Figure 7: RSS vs. Distance plot for each sensor position 

 

The values plotted in Figure 7 were then plugged into 

Equation (7) and the distance measurement error for RSS 

was plotted. This plot is shown in Figure 8. Notice that the 

errors obtained from TOA, shown in Figure 6, are in the 

millimeter range and the highest value is 3.5 cm, while the 

ones shown in Figure 8 are in cm, with the highest value 

being 5.1 cm. This confirms that ranging using RSS has 

larger errors than its TOA counterpart. To further confirm 

this, if we plug in the values given in TABLE I into 

Equation (10), at a distance of 50 cm, we can find the CRLB 

of RSS for the variance was in the range of 0.0699 and 

0.427 dB; while the CRLB for TOA using Equation (9) 

came out to be 1.1388 x 10
-12

 ns. 

 
Figure 8: Distance Measurement Error from RSS for each sensor position 

 

VI. SOURCES OF ERROR IN LOCALIZATION 

The CRLB provides the ultimate measure of accuracy for 

ranging, but for digital systems inside the body, we get 

sampling and quantization errors. It may be of some interest 

as to why the standard deviation for TOA that was 

calculated experimentally in Section IV is about 10
12

 times 

larger than the CRLB calculated in Section V. One of the 

reasons for this could be that the multipath characteristics of 

the human body can only be truly modeled with a non-

homogenous body model. Work is being done in order to 

import individual organs to the MATLAB FDTD solver 

developed by the research team. Once this is achieved and 

all the organs have been assigned different values of 

dielectric constants and conductivity, can we see the true 

multipath effects of the human body. Another reason for an 

error in TOA in real measurements could be the movement 

in the human body. This can change the distance between 

the two sensors. Figure 9 shows that, if sensor a is located 

on the chest and sensor b on the belt, the simple movement 

of raising both hands can cause a change of 3.2 cm (from 31 

cm to 34.2 cm) and in the distance between them. The 

change in distance between these same sensors when the 

body is in the running position is 2.1 cm (from 31 cm to 

28.9 cm). So if the position of the surface sensor changes 

with simple bodily movements, there will be much larger 

errors in measuring the distance between these sensors and 

an endoscopy capsule traveling inside the GI tract. Further 

results that may eliminate these problems will be presented 

at the conference. 

 
Figure 9: Change in distance of two sensors due to the movement of the 

body 

5606



 

 

 

VII. CONCLUSIONS 

The study conducted in this paper verifies that Time of 

Arrival is a more accurate measure of distance between two 

sensors in a fading environment than the Received Signal 

Strength. We first demonstrated by comparing a plot 

obtained from a published RSS model with our TOA results 

gathered from simulations run on our proprietary FDTD 

algorithm, which requires less computational resources than 

commercially available FEM solvers used for similar 

simulations. We then verified this observation by using 

CRLB equations given in the literature and substituting the 

values obtained from the data of our own FDTD simulations 

for both RSS and TOA techniques. Finally we investigated 

possible reasons for the discrepancies between the simulated 

and calculated values of the variance for TOA and RSS 

techniques. 
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