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Abstract— Wireless capsule endoscopy (WCE) has become a good 
therapeutic method for a period of time. It helps detect, exam and 
heal gastro-intestinal (GI) related diseases. In the Capsule 
endoscopy application, knowledge of capsule position inside 
human body is rather important because it enables doctors locate 
the tumor of bleeding inside GI track and prepare for further 
therapeutic operations. However, due to the harsh environment 
for in-body wireless channel, in-body localization remains 
difficult and erroneous. In this paper, an improved three 
dimensional maximum likelihood algorithm has been introduced 
based on received signal strength (RSS) localization technology. 
Human body mesh and GI track mesh are built as the 
environment of algorithm simulation. Algorithm performance 
has been evaluated by comparison with the Cramer-Row Lower 
Bound (CRLB) and ranging error of the algorithm varies from 
25mm to 140mm. By analyzing the results, we conclude that the 
three dimensional maximum likelihood is heavily impacted by the 
distance between implant and base station and its performance 
can be further improved.  
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I.  INTRODUCTION 
Body Area Network (BAN) can be referred to as a network 

technology established inside, on the surface of or in the 
surrounding area of human body. With time going on, BAN 
soon gains a huge reputation among different fields such as 
medical service, sport, insurance, social security, entertainment 
and even military. In medical or biomedical application, BAN 
systems are generally defined as an implanted body area 
network which is often consist of several nano-size sensors 
implanted in human body or distributed on the surface of 
human body which are capable for short-range wireless 
communication and biomedical signal monitoring [1]. 

Wireless Capsule Endoscope (WCE) is one of the most 
shining applications of BAN in the medical and biomedical 
area due to the fact that more than 19 million people are 
estimated suffering from gastro-intestinal (GI) related diseases 
[2]. In order to prevent, detect and heal GI diseases, doctors 
need a technology that can help them examine the GI track. In 
the old days, examine equipment was a flexible rubber tube 
with cable in the middle, mini-camera and tiny light attached to 

an end and patients had to swallow the rubber tube to help 
collect images from GI track [3]. However, the discomfort of 
having a tube stuck in the throat for hours has been eliminated 
with the born of WCE because for WCE equipment, the mini-
camera and lights are compressed in a capsule-size, patient-
friendly, painless and swallowable device that communicates 
with exterior apparatus wirelessly.  

Apart from the GI images, Therapeutic operations and 
follow-up interventions also highly rely on the knowledge of 
position and orientation of the capsule [4]. Consequently, 
Investigation of localization technology for in-body wireless 
devices becomes increasingly important. Since the performance 
of Time of Arrival (TOA) technology are limited by the 
inadequate bandwidth (402-405MHz) of Medical Implant 
Communication Services (MICS) band and the Angle of 
Arrival (AOA) technology suffers from complexity and 
practical problem, Received Signal Strength (RSS) localization 
technology turns out to be the best choice for in-body 
localization [6,8]. In RSS based localization [6], the received 
signal strength of radio frequency wireless signal is measurable 
at the receiver side during the routine data communication 
without requiring additional power or occupying extra 
bandwidth [7]. Given the received signal strength and a proper 
path-loss channel model, the distance between transceivers can 
be easily calculated. Moreover, since a well-designed path-loss 
channel model has been already provided in the IEEE 802.15.6 
draft for BAN standard, RSS based localization for in-body 
wireless device attacks more and more attention. 

Due to the harsh environment of in-body wireless 
propagation channel, RSS based technology is notoriously 
unpredictable [6]. The strong absorption of in-body tissues and 
organs give raise to inconstancy of received signal strength, to 
make it worse, the slight motion of these tissues and organs 
aggravate the localization error. In order to limit the ranging 
error to the minimum, it is necessary to come up with accurate 
and efficient algorithms.  

In this paper, an improved maximum likelihood algorithm 
is introduced and applied based on WCE application in the 
purpose of reducing ranging error and localization error during 
the in-body localization procedure. The scenario is that four 
base stations (BS) are evenly distributed on the front side of 
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human body and another four BSs mirroring on the back. The 
implant transmitter moves along the small intestine. Because of 
the shadow fading effect of in-body wireless channel, the 
ranging error of our algorithm ranges from 20mm to 145mm 
and the mean value of ranging error is 80mm. Software 
simulation result has been compared with general Cramer-Rao 
lower bound (CRLB) showing that the improved maximum 
likelihood algorithm has an excellent accuracy. 

The remainder of this paper is organized as follow. Section 
II describes the scenario under which the algorithm simulation 
is conducted by measuring received signal strength between 
implant device and body surface attached base stations. In-
body channel model and CRLB are also introduced. In section 
III, an improved maximum likelihood algorithm is reached 
based on the review of previous localization algorithms. 
Analysis of simulation results and comparison with CRLB are 
provided in section IV and section V concludes the paper. 

II. SIMULATION ENVIRONMENT 

A. Scenario 
The localization system employed in this paper consist an 

implant transmitter and eight receivers. The transmitter goes 
along GI track and four receivers are evenly distributed on the 
lower part of the front side of abdomen, surrounding the 
stomach, small intestine and large intestine. The other four 
receivers are located on the back side, mirroring the front ones. 

As is showed in figure 1, body muscle meshes and small 
intestine meshes share the same coordinate system, with the 
intestine meshes properly located inside human body. The 
muscle meshes used in simulation is in the size of 1800mm x 
600mm x 400mm, which generally fits various kinds of body 
type.  

B. Channel model 
The core of received signal strength based localization 

technology is the statistic path loss model for body area 

 
Fig. 1.  Simulated body mesh, left is human body muscles with base station 

indicated by circles, right is small intestine with dot indicating the position of 
implant 

Table 1.Parameters for the statistical implant to body surface path loss model[5]. 

 
network. The complexity and continuously slight motion of 
human body make it difficult to come up with a static and 
accurate model. Consider that in free space, distance d between 
the transmitter and receiver determines the final path loss, 
implant to body surface model is given by combining path loss 
at reference distance d0 and the effect of shadowing: 

0 10
0

( ) ( ) 10 log ( )dPL d PL d n S
d

= + +   (1) 

0(0, ) 50sS N d mmσ =∼ ，   (2) 

where PL(d0) represent the path loss at reference distance 
50mm, Coefficient n in the equation represent the path loss 
exponent, indicating the ratio between path loss increment and 
distance increment. Shadowing effect S follows a zero-mean 

normal distribution. The standard deviation sσ reflects the path 
loss variation of the mean [5]. IEEE 802.15.6 committee 
partitions the implant to body surface channel to deep tissue 
scenario and near surface scenario. Since in the WCE 
application, capsule is located inside GI track, deep tissue 
scenario has been chosen in this paper, and the parameter 
values are listed in table 1. The whole model is developed at 
MICS band (402-405MHz).  

C. Cramér–Rao Lower Bound 
In estimation theory and statistics, the Cramér–Rao bound 

(CRB) or Cramér–Rao lower bound (CRLB) expresses a lower 
bound on the variance of estimators of a deterministic 
parameter. In its simplest form, the bound states that the 
variance of any unbiased estimator is at least as high as the 
inverse of the Fisher information.  

The general form of Cramér–Rao lower bound can be 
obtained by considering an unbiased estimator T(X) of a 
function ψ(θ) where θ is an unknown deterministic parameter 
of function ψ(θ), distributed according to specific probability 
density function f(x, θ). The unbiasness here can be understood 
as: 

{ }( ) ( )E T X ψ θ=     (3) 

in this case, the Cramér–Rao lower bound is given by: 

[ ( )]var( )
( )

T
I

ψ θ
θ

′
≥    (4) 

where ψ’(θ) is the derivative of ψ(θ), and I(θ) is the fisher 
information matrix. Apart from being a bound on estimators of 
functions of the parameter, this approach can be used to derive 
a bound on the variance of biased estimators with a given bias.  

Consider an estimator �θ  with bias 
�( ) { }b Eθ θ θ= −  and let 

( ) ( )bψ θ θ θ= + , any unbiased estimator whose expectation is 
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ψ(θ) has variance greater than or equal to (ψ’(θ))2/I(θ). 
Therefore any estimator �θ  with bias b(θ) can be defined as:  

�
2[1 ( )]var( )

( )
b
I

θθ
θ
′+≥            (5) 

and based on equation (5), mean squared error of biased 
estimator is bounded by: 

�
2

2 2[1 ( )](( ) ) ( )
( )
bE b
I

θθ θ θ
θ
′+− ≥ +            (6) 

III. MAXIMUM LIKELIHOOD ALGORITHM 

A. Algorithm principle 
Typical localization algorithms include Least-square, CN-

TOAG, Nano and etc. [9-12]. Among these empirical 
algorithms, maximum likelihood centroid algorithm shows 
superior accuracy and can be used to estimate ranging error 
interval in real time. Most of empirical researches implement 
maximum likelihood algorithm in a two dimension indoor 
environment.  

In localization area L, coordinate of nth base station is 
defined as (xn, yn ,zn) and estimated distance between tag and nth 
base station are defined as � nd . (x, y, z) represent the position of 
tag and dn represent the actual distance between tag and nth 
base station. Ranging error nε  can be given as: 

�
nn d dε = −    (7) 

and the ranging error interval caused by shadow fading is 
given as Mn=[an, bn], deriving the maximum and minimum 
estimated distance as: 

�
maxD d a= −    (8a) 

�
minD d b= −    (8b) 

The localization area L can be divided into three regions as 
is showed in figure 2. 

 
Fig. 2. Area divition for maximum likelihood algorithm 

 
Fig. 3. (a) Maximum likelihood ranging area division. (b) bound of where the 

possible source reside.  

• Rn_1: interior region, sector region centered at base 
station position (xn, yn, zn) with a radius of Dmin 

• Rn_2: ring region, sector-ring region centered at base 
station position (xn, yn, zn) with inner radius of Dmin and 
outer radius of Dmax 

• Rn_3: exterior region, remained region in localization 
area L excluding Rn_1 and Rn_2 

Figure 3a shows the three dimensional regions in the 
algorithm considering two base stations and figure 3b illustrate 
the intersection area in a 3D coordinate system. Error interval 
for WCE application has been calculated by equation (1, 2) and 
the cumulative probability function (CDF) has been depicted in 
figure 4. From the CDF, the ring region for WCE application is 
worked out to be [-13dB, 13dB], dropping 5% erroneous 
localization results. 

According to equation (1, 2) and the CDF in figure 4, the 
probability that implant is actually located in each region can 
be given as:  

_1

_ 2

_ 3

{( , , ) } 5%
{( , , ) } 90%
{( , , ) } 5%

n

n

n

P x y z R
P x y z R
P x y z R

⎧ ∈ ≤
⎪ ∈ ≥⎨
⎪ ∈ ≤⎩

  (9) 

Weight for each region can be defined as:  

 
Fig. 4. Cumulative probability function of random Gaussian fading added in 

path loss 
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For any region Lo is the intersection area of Rn_a and Rn_b, 
the region weight wo should be the product of wn_a and wn_b. 

B. Three Dimension Maximum Likelihood Algorithm 
For the WCE application, assume that m BSs has been 

deployed to form the RSS based localization system together 
with the implant capsule. In this case, maximum likelihood 
algorithm can be estimated as follow.  

Assume that implant communicates with each of the eight 
BSs and gets the RSS reading, thus the localization area L can 
be partitioned into: 

• m interior regions: R1_1, R2_1, …, Rm_1 

• m ring regions: R1_2, R2_2, …, Rm_2 

• m exterior regions: R1_3, R2_3, …, Rm_3 

After that, the intersection region can be given as: 

1_1 1_ 2 1_ 2 _1 _... ...o k m kL R R R R R= ∩ ∩ ∩ ∩ ∩ ∩  (11a) 

1_1 1_ 2 1_ 2 _1 _... ...o k m kw w w w w w= × × × × ×  (11b) 

{1, 2,...,8}, {1, 2,3}, {1,2,..., }m k o N∈ ∈ ∈  

Finally, the region with largest weight is determined as the 
estimated region Lestimated and the centroid of estimated region 
can be defined as the estimated position of implant: 

� �
max( , , ) ( )weightx y z Centroid L=�  

IV. SIMULATION RESULTS 

A. Comparison with Cramér–Rao Lower Bound 
Cramer-Row Lower Bound is an important metric when 

evaluating and validating the accuracy and applicability of 
localization algorithms. Figure 5a shows a comparison between 
the CDF of the software simulation result and the CRLB.  
Observation tells that the result of CRLB performs much more 
static with a smaller variation range between 80mm and 
110mm while the algorithm output ranging from 25mm to 
140mm. However, even though the algorithm result and CRLB  

 
Fig. 5. (a) Comparison of CDF of Cramer-Rao lower bound against localization 

algorithm. (b) Point by point localization error of small intestine coordinates. 

are different in ranging, their average output at cumulative 
probability of 0.6 confluences. 

The localization errors of total 1926 coordinates in GI track 
are evaluated point by point in figure 5b. As can be seen from 
the figure, CRLB results in a gentle wave while the algorithm 
output suffers from severe fluctuations. This point by point plot 
again confirms the variation range difference between CDF of 
CRLB and algorithm result.  

B. Minimum and Maximum Error Coordinate 
To explain the difference between CDF and CRLB, the 

point with maximum and minimum localization error has been 
picked out (coordinate 316 for maximum localization error and 
coordinate 38 for minimum localization error).  

In purpose of facilitating analysis, the intersection region of 
maximum and minimum point has been projected into the YZ 
plane and the thickness of human body (X direction) becomes 
temporarily invisible but its influence on the localization result 
still remains.  

Simulation has been implemented for several times and two 
typical result of minimum error coordinate intersection region 
have been recorded in figure 6 and the result of maximum error 
coordinate intersection region is depicted in figure 7.  

The minimum error coordinate has thinly scattered 
distribution and smaller intersection region ranging about 
200mm in Y direction and 250 mm in Z direction. The 
maximum error coordinate always has a larger intersection 
region that ranges about 700mm in Y direction and 550mm in Z 
direction. Apart from that, during the simulation, minimum 
error coordinate and maximum coordinate always appear at a 
specific part of the small intestine mesh. As can be seen from 
figure 8a, the minimum error area is at the bottom right of 
human inner back while figure 8b shows that the maximum 
error area is in the core of human body.  

 
Fig. 6. Projection of intersection area for minimum error coordinate on YZ 

plane 

 
Fig. 7. Projection of intersection area for maximum error coordinate on YZ 

plane 
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Fig. 8. (a)Minimum localization error coordinate area in small intestine. 

(b)Maximum localization error coordinate area in small intestine 

C. Analysis of Coordinate Position 
Figure 9 depicts the procedure of maximum likelihood 

algorithm at the minimum error coordinate. In figure 9a, eight 
base stations are deployed and the eight red circles indicate 
Dmax while the eight green circles indicate the Dmin on the YZ 
plane. Figure 9b is the zoom-in of figure 9a in which the Dmax 
for the nearest base station can be observed in the center, 
limiting the estimated location area in a relatively small scale.  

Similar to the minimum error case, figure 10 shows the 
scatter plot of maximum error coordinate intersection area. As 
can been seen from the figure, the intersection area of 
maximum error coordinate is much larger than that of 
minimum error coordinate. Reasons can be partitioned into two 
parts. First and foremost, the green circles representing Dmin in 
figure 10b is larger than those green circles in figure 9b. 
Moreover, no minor red circle can be found in the middle of 
maximum error coordinate intersection area, thus unable to 
limit the localization error in a relatively small scale.  

Based on the previous analysis, we conclude that in our 
three dimensional improved maximum likelihood algorithm, 
implant positions have strong impact on algorithm performance. 
When the implant is located close to any base station, 

 
Fig. 9. Intersection area for minimum error coordinates 

 

 
Fig. 10. Intersection area for maximum error coordinates 

localization error turns out to be acceptable and the algorithm 
performance becomes good. Otherwise, when the implant is 
located in the middle of human body, the localization error 
raises because of being far away from base stations.  

The algorithm performance is partially superior to Cramer-
Row lower bound is mainly because in this paper, the Cramer-
Row lower bound takes the whole human body into 
consideration. It is intuitive that by reducing the sample area, 
Cramer-Row lower bound will result in lower localization error.  

V. CONCLUSION 
In this paper, we introduced an improved three dimensional 

maximum likelihood algorithm for in-body capsule endoscopy 
localization and analyzed the algorithm performance. The 
algorithm is presented for RSS based localization and the 
ranging error varies from 25mm to 140mm, partially superior 
to the overall human body Cramer-Rao Lower Bound. To 
explain that, several more simulation has been conducted and 
we observe that the minimum error coordinates distribute near 
body surface, very close to one of the base station while the 
maximum error coordinates are located near the center of 
human body, relatively far away from all of the base stations. 
As a result, the location of implant has a strong impact on the 
performance of this RSS based localization algorithm. 
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