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Abstract — Wireless capsule endoscopy (WCE) is a noninvasive 

way to provide excellent images of the lumen of the intestines as 

the capsule moving along in the gastrointestinal (G.I.) tract. 

However, the biggest drawback of this technology is its 

incapability of localizing of the capsule when an abnormality is 

found by the video source. Existing localization methods based on 

radio frequency (RF) and magnetic field suffer a great error due 

to the non-homogeneity of the human body and uncertainly of the 

movement of the endoscopic capsule. To complement the existing 

localization techniques, in this paper, we developed a series of 

image processing and visualization based algorithms to model the 

movement of the endoscopic capsule. First, a 3D map of the G.I. 

tract is generated to navigate the transition of the capsule. Then, 

by comparing the local similarity and feature points matching 

between the consecutive frames, the speed and rotation angels of 

the capsule can be roughly estimated. Finally, by mapping the 

pattern of the capsule’s movement onto the 3D G.I. tract map, we 

are able to simulate the entire transition of the endoscopic 

capsule in the 3D space. The experimental results show that the 

proposed method has a good estimation of the movement of the 

capsule. 
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I. INTRODUCTION  

      Wireless capsule endoscopy (WCE) [1] has been in the 

clinical arena for 12 years. It provides a noninvasive imaging 

technology of the entire G.I. tract. Current devices, for example 

devices developed by Given Imaging and Olympus American, 

are able to provide excellent images of the lumen of the 

intestines as they moving along in the intestinal tract. However, 

none of these devices could provide accurate location 

information of the capsule when an abnormality is found by the 

video source. An accurate measurement of the capsule’s 

position is of great benefit to the physicians in terms of 

reducing diagnosis time and taking immediate clinical 

management to obscure gastrointestinal bleeding [2]. Many 

efforts had been done to develop reliable localization technique 

inside human body. The Given Image Pillcam capsule [3] was 

originally developed with the potential capability of localizing 

the capsule on a 2-D plane at a twice-per-second rate. Eight 

external antennae were fixed to the anterior abdominal wall to 

detect the UHF-band signal that is emitted by the capsule. The 

position of the capsule on the 2-D plane of the abdomen is 

estimated depending on the signal strength received by each 

antenna with an accuracy of 6 inches. However, the clinical use 

of this software found that the crude localization result 

generated by the software was not helpful and this approach 

was soon abandoned. Another commonly used approach for 

capsule localization is to assume the capsule travels at a 

constant speed and the approximate position of the capsule is 

calculated according to the time of travel away from some pre-

defined land marks such like pylorus and ileo-cecal valve. 

Apparently, when using this approach, the further the capsule 

moves away from the land marks, the greater the likelihood of 

error is. Especially after the video capsule has entered a few 

centimeters of the small intestine, the localization error will 

increase dramatically. This is mainly due to the high complicity 

level of the shape of the small intestine. The distribution of 

small intestine is like a curled snake with its length varies from 

4.6m to 9.8m [4] (the average value for human being is 7m) 

and the tendency of loops is highly undistinguishable. Besides, 

the intestinal motility is not consistent. Peristalsis may make 

the wireless capsule sometimes move quickly, sometimes stop 

or sometimes even reverse and then progress with any 

combination of the movement above. Furthermore, the 

transition of the capsule itself is not axial. It may rotate with 

different angles or get flipped by 180˚. The unpredictable 

angulation of the wireless capsule creates difficulties in RSS 

based localization in terms of changing the antenna gain. Thus, 

knowing how the capsule moves inside human body will help 

us to analyze the radio channel and thereby enhance the 

accuracy of the localization. What’s more, considering the abo 

3-dimensional distribution of the small intestine, a 3D 

localization technique instead of 2D is also needed to provide 

sufficiently accurate spatial location information of the capsule. 

The rest of the paper is organized as follows: In section II, 

we generated a 3D intestinal tract map by extracting the central 

line of the existing 3D G.I. tract models. This map provides us 

a clear view of how the capsule transits inside human body. 

Then, by comparing the local similarity and matching the 

feature points between the consecutive endoscopic images, 

information such like speed and rotation angles of the 

endoscopy capsule can be roughly estimated to model the 

capsule’s movement inside the G.I. tract. In section III, both the 

experimental results and analysis of the proposed method are 

given explicitly. Conclusion and future work are addressed in 

section IV. 



II. MOVEMENT OF THE ENDOSCOPY CAPSULE 

A. 3D Map Generation 

     In every localization technique, map always plays a very 
important role in terms of refining the localization results. 
Existing literature [5] reported that a clear street map is able to 
reduce the GPS localization error from tens of meters to several 
meters in the urban area. In case of the localization inside 
human body, “map” is even more important since everything 
goes through the G.I tract follows the same route. Knowing a 
clear pattern of the intestinal tract will greatly enhance the 
localization accuracy. Therefore, tracing the path of intestinal 
tract is essential to the accurate capsule localization. Given a 
3D CAD model of the G.I. tract as shown in Fig. 1, we want to 
trace the center of the intestinal volume so we can model the 
movement of the capsule inside the tract. In this sub section, 
some 3D image processing techniques are applied to 
accomplish this goal. For the large intestine (as shown in the 
middle of Fig. 1), since it already has a very clear pattern which 
looks like a big hook, we applied 3D skeletonization technique 
[6] to extract the path of it. As for the small intestine, since the 
shape of the small intestine is much more complicated (the 
trend of the small intestine can be hardly recognized by human 
eyes), we developed an element sliding technique to trace the 
path. The basic idea behind this technique is to define an 
element shape (ES) with its radius automatically adjustable to 
the radius of the small intestine. This ES is propelled forward 
by a factor associated proportional to the average distance 
between the vertices within certain range and the physical 
center of the ES. As the ES goes along the small intestine, the 
position of its physical center is recorded and this will give us a 
clear path of the small intestine. The preliminary result of the 
path extracted from the 3D model is shown on the right of Fig. 
1.  

 
Fig.1. 3D path generation from a 3D G.I. tract model 

B. Speed Estimation of the Endoscopy Capsule 

After the endoscopy capsule was swallowed by the patient, 
it travels through the G.I. tract propelled by peristalsis [4]. 
From the dataset we observe that whenever the intestinal lumen 
contracts, the difference between consecutive frames is high, 
which to some level reflects a higher speed of the capsule’s 
movement. Based on this observation, we developed an 
automatic peristalsis detection method based on the color 
histogram similarity between the two consecutive frames [7]. 
The reason why we choose color histogram as the similarity 
metric is that it’s more robust in this particular application and 
insensitive to the texture noise caused by the bubbles and little 
pieces of food. However, the overall color histogram is not a 

good descriptor of the color feature since frames with different 
contents may have the similar histogram distribution. One 
example is given in Fig.2, although the contents of the two 
frames are totally different, the overall histograms of the two 
still look similar. Thus, instead of using the overall color 
histogram, we developed a local color histogram comparison 
algorithm. The algorithm divides the captured image into 16 
non-overlapping blocks and calculates the local similarity for 
each pair of the corresponding blocks. Besides, the original 
frames captured by the endoscopy capsule are encoded by RGB 
color space, which is difficult to describe the nature of a color 
by the amounts of each channel. Thus, we convert the 
histograms into HSV color space, which is more similar to 
human’s visual perception [8, 9]. Then, the similarity between 
two frames can be calculated by: 
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where    and    represent the color histograms of the 

corresponding blocks. M is the number of the non-overlapping 

blocks which equals to 16. N is the sample number of the 

histogram which equals to 768. Since the WCE uses a 

pinhole camera, when calculate the similarity, only the area 

covered by the red circle (as shown in Fig. 3) is under 

consideration. A sample partitioned endoscopic frame and its 

HSV histograms is shown in Fig.3. 

 
Fig.2. Overall histogram comparison 

 
Fig.3. Local similarity comparison based on partitioned endoscopic image  

C. Rotation Estimation of the Endoscopy Capsule 

     If the similarity between two frames is high, it can be 

inferred that the endoscopy capsule stayed still in the same 

position or just rotated slightly during measured time slot. In 

the case when the same pattern appears in both frames, it’s 

http://dict.cn/pinhole
http://dict.cn/camera


possible to calculate the rotation angel between the two frames 

by feature matching. First, a set of feature points needs to be 

identified in the reference (first) frame. The simplest statistical 

measurement is to calculate the variance    of grey levels in a 

square neighborhood (P×P, P=16) centroid on a pixel. By 

sliding the square window back and forth on the frame, points 

with maximum local grey level variance (mostly on the edges) 

are selected to be the initial feature points.  
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where    is the variance of the local grey level and   is the 

average grey level within the sliding window. 

     Then, to find the corresponding feature points in the second 

frame, a cross-correlation matching technique [10] is applied. 

In signal processing, cross-correlation is a classical method of 

estimating the degree to which two series of signals are 

correlated. In 2D pattern recognition, cross-correlation can be 

used for identifying the target pattern in the image. Consider 

the image below in black and the mask shown in red. The mask 

is centered at every pixel in the image and the cross correlation 

is calculated, this forms a 2D array of correlation coefficients. 

The un-normalized correlation coefficient at position (    ) on 

the image is given by:  

   (    )   

∑ ∑ (    (  
 

 
   

 

 
)      ̅̅ ̅̅ ̅̅ ̅)

   

      

   

      

( (       )

      ̅̅ ̅̅ ̅̅ ̅̅ ̅)                                                                 ( ) 

where Q is the size of the mask, f(i, j) represents the intensity 

value at (i, j),      ̅̅ ̅̅ ̅̅ ̅ is the mean value of the mask pixels and 

     ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean value of the image pixels covered by the 

mask. The mask itself is a cropped image which needs to have 

the same appearance as the pattern to be found. If the mask and 

the pattern being sought are similar, the cross correlation 

between the two will be high. The peak  (    ) is the position 

of the best match in the searching image.  

 
Fig.4. Cross correlation sliding window 

     Knowing the positions of the corresponding points in two 

consecutive frames, to find how much the capsule rotated, we 

need to calculate the rotation matrix between the two frames. 

Rotation matrix, generally indicated by R, is a     matrix 

shown as below: 
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where  ,  , and   represent the rotation angel around x-axis, 

y-axis and z-axis respectively.  

There are many ways to recover the rotation matrix. In this 

paper, we used Singular Value Decomposition (SVD) [11] 

method due to its easy implementation. The basic principle of 

SVD is to decompose a matrix (defined as H, in this particular 

application H is a     square matrix) into 3 separate 

matrices: 
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where the columns of U are the left singular vectors, S has 

singular values and is diagonal and    has rows that are the 

right singular vectors. The SVD represents an expansion of the 

original data in a coordinate system where the covariance 

matrix is diagonal.  

The next step involves accumulating a matrix, called H. 

One thing needs to be pointed out during this step is the re-

center of both dataset so that both centroids can be placed at 

the origin, like shown below: 
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where    and    are corresponding point sets in first frame 

and second frame respectively in [     ]  style. This step 

removes the translation component, leaving only the rotation 

component to deal with. After H is factorized by SVD, the 

rotation matrix can be calculated by multiplication of   

and   : 
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where R can be expressed in the following form: 

                        [

         
         
         

]                             (  ) 

  From the matrix R, the rotation angel   around the 

optical axis, as illustrated in Fig. 5, can be calculated by:  
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Fig.5. Rotation of the capsule around main optical axis 

III. EXPERIMENTAL RESULTS 

According to the clinical data provided by Umass Memorial 

Hospital, the average transit time of the capsule from the 

duodenum to the cecum was 240 ± 40 min. Our experimental 

results show that average 2.4 peristalsis were detected per min 

from the endoscopic video and each peristalsis takes up around 

6 ± 2 seconds. In terms of time, around 20% of the time the 

similarity between consecutive images drops below 65%, 

which means the capsule proceeding very fast propelled by the 

peristalsis. Around 30% of the time the similarity between 

consecutive images stays beyond 75%, which means the 

capsule either stays still or rotates very slowly. Fig.6 shows a 

sample video clip of 50 seconds. During this transit time, two 

peristalsis were detected. 

 
Fig.6. Speed estimation according to the similarity between consecutive 

images  

Fig. 7 shows two consecutive endoscope images and the 
corresponding feature points found by the algorithm 
introduced in section II. Overall 52 feature points were 
detected in the example shown in Fig.6 where circles indicate 
the original positions of the feature points and lines pointed to 
the rotated positions in the next frame. The calculated results 
for the rotation matrix and rotation angle are shown in table 1. 

 
Fig.7. Rotation Estimation by feature matching between two consecutive 

images  

Table 1. Calculated parameters for the example shown in Fig. 7 

Feature 

Points 
Detected 

Rotation Matrix 
Translation 

Matrix 

Rotated 

Angle 

52 [
             
              

   
]   [

        
       
 

] 15.5354 

 

 
Fig.8. (a) original frame (b) rotated by     (c) rotated by     (d) rotated 

by     

Table 2. Calculated parameters for the example shown in Fig. 8 

Real 

Rotation 

Angel 

Feature 

Points 

Detected 

Rotation Matrix 

Calculated 

Rotation 

Angle 

Error 

     79 [
              
             
   

]          0.1303 

     18 [
               
             
   

]           2.4324 

    10 [
               
             
   

]           collapse 

To verify the accuracy of the results, we artificially 

generated a set of rotated frames with different angles from the 



same endoscopic image. The rotated angles are    ,     and 

    respectively.  From Table 2 it can be seen that when the 

rotation angle is small (<   ), the calculated results are very 

accurate with an average error below     . However, as the 

rotation angle goes up, the accuracy drops down, finally the 

algorithm collapses at the rotation angle >   . 

IV. CONCLUSION 

   In this paper, we presented a novel image processing 

based approach to analyze the movement of the endoscopy 

capsule inside human body. The major contribution of this 

work includes introducing the concept of “3D map” into the 

localization inside human body and modeling the movement 

of endoscopy capsule. The proposed technique is very easy to 

implement, low cost, and with high accuracy. No extra device 

is needed for this technique other than the video camera itself. 

The experimental results show that the proposed speed and 

rotation estimation methods have a good performance 

especially when the capsule moves slowly. In the future, we 

will focus on refining this algorithm according to the clinical 

data and combining this technique with the existing RF 

localization approaches to provide a hybrid solution to the 

localization inside human body. 
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