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ABSTRACT Small intestine is the longest organ in the gastrointestinal tract where much of the digestion
and the food absorption take place. Wireless video capsule endoscope (VCE) is the first device taking
2-D pictures from the lesions and the abnormalities in the entire length of the small intestine. Since precise
localization and mapping inside the small intestine is a very challenging problem, we cannot measure the
distance traveled by the VCE to associate lesions and abnormalities to locations inside the small intestine,
and we cannot use the 2-D pictures to reconstruct the 3-D image of interior of the entire small intestine in
vivo. This paper presents the architectural concept of a novel cyber physical system (CPS), which can utilize
the 2-D pictures of the small intestine taken by the VCE to reconstruct the 3-D image of the small intestine
in vivo. Hybrid localization and mapping techniques with millimetric accuracy for inside the small intestine
is presented as an enabling technology to facilitate the reconstruction of 3-D images from the 2-D pictures.
The proposed CPS architecture provides for large-scale virtual experimentations inside the human body
without intruding the bodywith a sizable equipment using reasonable clinical experiments for validation. The
3-D imaging of the small intestine in vivo allows a lesion to be pinpointed for follow-up diagnosis and/or
treatment and the abnormalities may be observed from different angles in 3-D images for more thorough
examination.

INDEX TERMS Cyber-physical-system, video capsule endoscope, hybrid localization, body-SLAM,
3D reconstruction.

I. INTRODUCTION
Annually, over 3 million people in the US are hospitalized as
a result of various GI diseases [1]. In recent years, inspired
by the1966 science fiction movie the ‘‘Fantastic Voyage’’,
a new wave of micro-robots (microbots) for discovery mis-
sions inside the human body have emerged in the health
industry [2]–[5]. Wireless technologies, imaging techniques
(live cameras, X-ray, and MRI) and magnetic field gradients
can be used to assist in navigation, communication and con-
trol of these devices as they move along the human digestive
tract or through the vascular tree. The wireless video capsule
endoscope (VCE), which is the size of a large vitamin capsule
and carries a video camera and an RF transmitter to transfer
video information to the surface of the body, is perhaps one
of the most popular precursors of these microbots, used for
wireless gastrointestinal-tract (GI-tract) imaging. The first

wireless VCE was developed by Given Imaging [5] and
approved by the FDA in 2001. This device revived inter-
est in the small intestine, which had been minimal because
of difficulty in access. Since then, a variety of different
VCE’s have been developed to examine additional parts of the
intestinal tract. It is now possible to capture high resolution
images of the entire GI-tract in a noninvasive manner. These
devices have one to four cameras, with frame rates varying
from 2 to 38 frames per second, and they range in size from
26 to 31 mm in length and 11 mm in diameter. The images
produced are of high resolution and enable the detection of
intestinal bleeding and its source. VCEs have proven very
useful in both diagnosing and in sequential follow-up of the
therapeutic response to treatment of Crohn’s disease [7]–[9].
In a typically eight hours long ‘‘fantastic voyage’’, the first
generation VCEs that capture two 2D images per second,
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produce a large data base of 57,500 images, approximately
half of that from the small intestine, and use RF waveforms
to carry the resulting 22 GB of information from inside to
the surface of the human body to be stored for diagnostics of
lesions and abnormalities inside the GI tract and in particular
inside the small intestine where no other medical instrument
can penetrate fully.

Ideally, RF signal transmitted from the microbot and the
numerous pictures taken by the VCE should allow us to map
the 3D path of movement of the microbot and use that to
reconstruct the 3D image of the interior of the small intestine
in vivo using 2D pictures taken by the VCE. However, the
small intestine is a long twisted and convoluted organ with a
length of 5-9 meters and a diameter of 2.5-3cm, occupying
a relatively small area in the abdomen with dimension of
around 20-30cm. Mapping its 3D path of movement accu-
rately enough to reconstruct the 3D image of the small intes-
tine requires very accurate millimetric localization precision
inside the human body. This is a complex and extremely
challenging problem because 1) the path of movement of
the microbot inside the small intestine is very complex
and unpredictable, 2) inside the human body is a complex
non-homogeneous environment for RF propagation, and
3) repeatable experimentation inside the human body, needed
for comparative performance evaluation of alternative algo-
rithms, is formidable [10]–[12]. As a result, 15 years after the
invention of the VCE [6] precision simultaneous localization
and mapping science and engineering for the 3D path of
movement for these microbots inside the small intestine is
still in its infancy [13]–[15]. Without millimetric localization
accuracy for the path of movement of a very long and small
organwe cannot use the 2D pictures of the VCE to reconstruct
the 3D image of the interior of small intestine. Consequently,
we have ended up with a huge in vivo data base of 2D pictures
from inside the small intestine collected from millions of
patients but we have no clue of the actual shape and the
3D image of this vital organ in vivo.

In this paper we present a novel architectural con-
cept for a Cyber Physical System (CPS) for simultaneous
RF experimentation and 3D imaging inside the small intestine
in vivo using 2D pictures taken by the VCE and RF signals
carrying these pictures to the surface of the human body.
To enable the 3D reconstruction, we present hybrid local-
ization and mapping techniques inside the small intestine
with millimetric precision using received RF signal in body
mounted sensors and similarities among consecutive images
from the VCE. The CPS architectural concept provides for a
repeatable virtual experimentation inside the human body for
design of optimal algorithms without introducing the human
body with sizable equipment. The designed algorithm for
path reconstruction is validated with limited clinical exper-
imentations using a novel 3D X-Ray procedure. Since the
VCE power budget is highly limited [56], [57], the proposed
CPS allocate all computational load to the on-body units
and off-body machines and there is no extra action required
from the capsule pill. Such load allocation guarantees the

adequacy of the power consumption and battery life of
the VCE.

In the remainder of this paper we provide an overview of
the CPS and explain how each element of the CPS can be
constructed. Section two provides the elements and architec-
ture of the CPS, section three explains how existing large
data base of images and limited new clinical experiments
with RF monitoring using body mounted sensors can be
used for validation of algorithms, section four explain how
we can model RF propagation inside the human body using
existing software tools and how we can model motions of the
VCE using consecutive images from the VCE, and section
five explains the RF and visual emulation environment of
the CPS. Section six is devoted to description of algorithms
for simultaneous localization and mapping inside the human
body (Body-SLAM) as well as algorithms for 3D reconstruc-
tion of the small intestine image using 2D picture from the
VCE camera.
II. OVERVIEW OF THE CPS FOR 3D VISUALIZATION
OF INSIDE THE SMALL INTESTINE
One of the fundamental challenges for designing an embed-
ded system in a microbot, such as a VCE, for operation inside
the small intestine is a lack of access to the environment for
physical experimentation. Additionally, a major challenge to
designing sophisticated localization algorithms for the VCE
is that there is no ground truth of the path of movement
of the VCE inside the human body to use as a reference
for performance evaluation of localization algorithms. There
are also no validated models for the movement of the VCE
or propagation of the RF signal from the VCE in order to
compare the accuracy of different algorithms against one
another in a realistic manner. The CPS presented in this paper
overcomes these problems and precisely maps the path of
movements of the VCE in real living humans so that we can
reconstruct the 3D image of the entire small intestine. The
CPS incorporates the design of an emulation environment for
RF propagation and a series of images taken along a known
path with models for VCE motion and RF propagation. The
first iteration of algorithms is designed in this emulated
environment. The models for motion and RF propagation
as well as the algorithms are then tested on a few patients
to provide a feedback for subsequent design iterations. The
feedback process continuously adjusts the existing models,
emulation environment and algorithmswith clinical data until
satisfactory results are achieved.

Figure 1 provides an architectural overview of the CPS.
First, the speed of movement of the microbot is mod-
eled using similarities between consecutive VCE images
(Figure 1, modeling VCE motion) of patients with follow-
up clinical ‘‘explorations’’ of locations of abnormalities
inside the small intestine using an existing data base of
VCE images (Figure 1, visual data). The abnormali-
ties discovered by follow up CadScan and X-ray can be
used as landmarks for distance traveled to validate speed-
estimating algorithms using image processing techniques.
Themotionmodel is then imported to a hardware platform for
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FIGURE 1. Overview of the CPS for localization and distance traveled inside the small intestine.

RF experimentation and a 3D visualization platform
(Figure 1, RF and Visual Environment) to emulate a 3D
shape of the small intestine allowing simultaneous emulation
of the received wideband signal at body mounted sensors as
well as the images observed by the VCE camera from any
location of the known path of VCE movement. The heart of
the hardware platform is a multi-port real-time RF channel
emulator (e.g. PROPSIM C8) that is connected to the actual
transmitter and receiver RF devices. This emulation environ-
ment is then used for modeling wideband radio propagation
and designing the first iteration of the algorithm for Simul-
taneous Localization and Body-SLAM as well as 3D small
intestine reconstruction algorithms which integrate the 2D
images from the camera and the path ofmovement of theVCE
(Figure 1, Body-SLAM and 3D Imaging Algorithms). The
physical and the estimated location of the capsule along
with the 3D images of the organs are imported to the virtual
visualization platform. Using this segment of the CPS enable
us to design and comparatively evaluate the performance of
complex alternative algorithms in an emulated environment
with known path of movement and 3D image of the small
intestine as the ground truth. In this platform one can examine
different alternatives for power efficient algorithms until the
accuracy goal of a few centimeters in traveled length, needed
by doctors for surgical operations, and a few mm in abso-
lute 3D location estimate, needed for reconstruction of the
3D image, is achieved. Next stage is to examine these algo-
rithms on human subjects to validate the accuracy and provide
a feedback loop for next iteration of algorithm design.

The clinical study phase of the CPS begins by collecting
synchronized visual and RF signals on limited human sub-
jects (The clinical study phase of the CPS begins by collecting
synchronized visual and RF signals on limited human sub-
jects (Figure 1, Clinical Data Acquisition). This feedback
loop allows the CPS to refine the RF model and the engineers
to modify the algorithms until the precision requirements
are also validated on the empirical data from real human.
After completion of the design phase, the CPS can collect
the 3D image of any patient for comparative studies of the
shape of the small intestine or other educational and research
applications. This is a scientific breakthrough in 3D imag-
ing technology for the interior of small intestine using real
2D images of the microbot travelling inside the small
intestine.). This feedback loop allows the CPS to refine the
RF model and the engineers to modify the algorithms until
the precision requirements are also validated on the empirical
data from real human. After completion of the design phase,
the CPS can collect the 3D image of any patient for com-
parative studies of the shape of the small intestine or other
educational and research applications. This is a scientific
breakthrough in 3D imaging technology for the interior of
small intestine using real 2D images of the microbot travel-
ling inside the small intestine.

III. CLINICAL DATA ACQUISITION
Since the ultimate performance of the proposed CPS largely
depends on the quality of clinical data base, we start our
discussion from the clinical data acquisition. In the initial
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iteration of the CPS, clinical data acquisition uses a large
data base of existing images to model the speed of movement
of the microbot to be used in the emulated environment for
the design of algorithms. Such data provides the simplest
and most fundamental environment of the inside of small
intestine. After that, in the following iterations, images with
synchronized RF data will be acquired and applied to the
system in order to further tune, evaluate and validate the
algorithms.

Since the VCE was introduced to the market in 2001,
several millions of them have been used on patients. This
huge data base of pictures from inside the human body
is waiting further processing and discovery. Specifically in
our CPS, we employ the data base collected by Dr. Cave
at the University of Massachusetts, which includes over
3000 patients from which 10-15% are annotated with follow
up procedures. This database includes double tube experi-
ments as well as a variety of capsules with different orien-
tation and number of cameras.

For the existing data, it is necessary to associate the abnor-
mality with its actual position, and four techniques can be
used to validate the position within the abdominal cavity.
(1) The VCE provides up to 55,000 images in jpeg for-
mat at 2 frames per second. These images are transmitted
to a recording device in real time via an antenna attached
to the patient’s body. The resulting data are processed by
proprietary software developed by manufacturers (e.g. Given
Imaging Inc.) into a video which can be read by a trained
observer at speeds ranging from single frame to full motion
video speed. Since each image is associatedwith a timestamp,
it is possible to identify the exact time when either a fixed
point (landmark) such as the pylorus or ileocecal valve or an
abnormality such as a tumor or site of bleeding is reached.
In this way, the relationship of an abnormality can be related
to the landmarks. However, this observation alone is inade-
quate for measurement of the distance because VCE move-
ment is irregular within the G.I. tract. (2) Patients who are
thought to have tumors on the basis of VCE usually undergo
computed tomography (CT), which provides a 3D view of
the entire small intestine and can localize the lesion anatom-
ically. This technique can be enhanced by using orally and
intravenously administered contrast agents to provide more
accurate location for validating the motion estimation model.
(3) The positional information measured from the previous
steps can be further validated by deep enteroscopy. Deep
enteroscopy is a new technique that employs two balloons or
a spiral device [8] placed over a flexible endoscope which,
when deployed in the small intestine, allows for pleating
the small intestine on to the endoscope. Pleating effectively
shortens the intestine, eliminates looping, and allows deeper
penetration of the endoscope. It is usually possible to advance
the scope up to 250 cm or more beyond the pylorus when it
is inserted orally and up to 200 cm when inserted through the
anus. As the scope reaches a point of interest, that point can be
tattooed with India ink to facilitate localization at subsequent
surgery or repeated VCE and to measure the distance from a

fixed landmark such as the Ligament of Treitz [20 cm from
the pylorus and readily seen at surgery but not by VCE] or
ileocecal valve using a measuring tape to physically measure
the location of a lesion with respect to the length of the
small intestine. It is also possible to insert a metallic clip
at the point of interest to enhance subsequent radiological
detection. Such a clip attached to the mucosa eventually will
drop off and be passed in the fecal stream. (4) Patients who
have a VCE-detected lesion that requires surgery present the
opportunity to physically measure its location with respect to
fixed points in the small bowel during surgery. We can relate
this measurement to the times of the VCE images using the
algorithms and models described herein. Previously recorded
images using each of these enhanced methods are available
within the selected data set. Used alone, or in combination,
they will permit the development of movement models and
the validation of simulation, modeling and development of
localization algorithms with enhanced use of radiofrequency
tracking of small objects within the abdominal cavity.

Simultaneous acquisition of RF and visual data is more
complex and it requires data acquisition hardware and multi-
ple antennas mounted on the human body. There are only a
few experiences with monitored RF signals at body mounted
sensors that are reported in the literature. UMass Medical
School have recently completed an IRB-approved pilot study
with 30 volunteers designed to validate new software associ-
ated with a new video capsule (EC-10 from Olympus Corp,
Tokyo, Japan) [12]. The software was designed to measure
RF localization using TOA of the signal from the capsule in
three dimensions. Validation was achieved by taking 5 sets
of sequential abdominal images (AP and lateral) per patient
at 15% of the standard dose required for routine abdominal
digital radiographs. The capsule and 6 radio-opaque points
on the antenna on the body surface were easily detected at
the reduced dose (Figure 1, RF Data). Pairs of radiographs
(AP and lateral view) were taken at 30 minute intervals after
the capsule had passed the pylorus, as confirmed by the real
time viewer on the data recorder. The time clock on the
recorder and hence each digital image from the video capsule
was synchronized to the time of each radiological image. The
3D (x,y,z) error as calculated for each of the 5 points was
± 2cm compared with that calculated by the software. This
experiment demonstrated that clinical data acquisition for
synchronized RF and visual data is feasible though it is very
complex and expensive. The process involved human sub-
jects; therefore, such experimentation has to be minimized.
Our CPS follows the same procedure to validate the accuracy
of our hybrid RF and visual Body-SLAM algorithm.

IV. MODELING THE VCE MOTION AND RF SIGNALS
The algorithms for Body-SLAM and reconstruction of a
3D image of the small intestine are designed based on the
emulated visualization and RF propagation. These emula-
tions rely on the accuracy of the models for motion and RF
propagation (Figure 1). The emulation engine of the CPS
(Figure 1; RF and Visual Emulation) begins with the motion
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FIGURE 2. Feature extraction for estimating motion.

model of the microbot to specify its location on a given path
of movement. From that location, the system emulates the
images observed by the microbot’s camera. The RF propa-
gation models emulate features of the signals received from
the microbot by the body mounted sensors. These models are
exploited in the following emulation environment, which is
then connected to development module for implementation
of the algorithms.

A. MODELING THE MOTION SPEED OF THE MICROBOT
The speed of movement of microbot is highly complex. It is
moved passively by peristalsis within a convoluted tube rang-
ing in length from 5 to 9m. A typical microbot (e.g. VCE,
Given Imaging, Yoqneam, Israel) is 11 × 26 mm and rigid,
whereas the small intestine is soft, folded and distensible.
Therefore, the capsule can move forward and backward,
tumble and move toward or away from the body mounted
sensors, presenting varying angles to the sensors. Despite
these continuously changing positions, the mean transit time
through the small intestine is remarkably consistent at about
4hr in the normal intestine [9].

To begin modeling this complex problem, we have used
videos from patients who had received multimodal investiga-
tions to provide localization data that can be linked with RF
measurements to validate location estimates in 3D [12]. A set
of microbot’s images of the small intestine from multiple
patients can be used as the database on which to develop gen-
eralized statistical models for the movement of the capsule.

As explained in the data acquisition section, we can use
the pylorus (the beginning of the small-instine) as the land-
mark for distance and location measure in patients for whom
the landmarks were localized using follow-up procedures
to provide validated conclusive results. The patients should
be selected to represent the maximum amount of diversity
in the underlying anatomy and location of small intestine
landmarks. We can primarily use video images obtained from
the VCE augmented by information obtained from available
CT scans, deep enteroscopy, and surgery in order to refine the
models.

It is possible to extract visual features (Figure 2) on empir-
ical data of the microbot images from the small intestine
and use machine learning methods to: 1) model the speed
of the microbot in individual patients as it travels through
the small intestine; and 2) determine the differential angular
movements of the microbot along the path of movement [14].
To model microbot speed, we began by modeling the move-
ments with a bi-polar behavior consisting of moments of
pause and motion with a constant speed [14]. Peristalsis
is the major force that propels the capsule’s transition.
Peristalsis is a periodic contraction and relaxation of muscles
that propagates in a wave down the intestinal tube. It propels
the microbot capsule through the small intestine quickly but
with variable velocity. During the breaks between waves of
peristalsis, the capsule tends to stay still or move gradually
with a small change in angle. Based on this observation, we
modeled a bipolar speed movement for the speed of the VCE.
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A Kernel-Support vector machine (K-SVM) classifier has
been used in [16] to detect the two states (move, pause) of
a capsule from a window of consecutive images that were
reported by the microbot.

B. MODELING RF WAVEFORM TRANSMISSION
INSIDE THE HUMAN BODY
A radio channel suffers from temporal, spatial and directional
fading caused by human body motions and random variations
of the multipath components carrying radio signals from one
location to another. Inside the human body these multipath
arrivals are caused by reflection and diffraction of the signal
at the edges of the organs and the human body surface. In the
literature for statistical measurement and modeling of the
radio propagation, the wideband radio channel between a
wireless transmitter and receiver is described by [17]:

h(d, t, β, φ, τ, θ) =
L∑
i=1

βdi (t)e
jφdi (t)δ[τ− τ di (t)]δ[θ − θ

d
i (t)]

(1)

where h(d, t, β, φ, τ, θ) is the overall channel impulse
response at time t , between a transmitter and receiver that
are at a distance d from one another; βdi , φ

d
i , τ

d
i , and θ

d
i are

the amplitude, phase, delay, and angle of arrival of the i-th
radio path, and L is the number of paths. Since the wireless
microbot is travelling through the GI tract and the body-
mounted sensors that are used as reference points for local-
ization are always in small local motion caused by normal
human functions such as breathing and walking, these paths
and the channel impulse response are also functions of time
and space.

In localization applications, either the received signal
strength (RSS):

RSS(d, t) =
L∑
i=1

∣∣∣βdi (t)∣∣∣2 (2)

or time-of-arrival (TOA) of the first path can be used:

τ di (t) = c× d (3)

in which c is the speed of wave propagation which is the same
as speed of light in free space.

Since the characteristics of the RF channel changes rapidly
with time and location, empirical statistical models of these
characteristics are developed for different applications and
environments. In traditional applications for wireless access
and localization in urban and indoor areas, the characteristics
of the received signal are physically measured in different
times and in numerous locations. These physical measure-
ments are then used to model the stochastic behavior of
the characteristic parameters. Massive RF measurements
inside the human body is impossible so researchers resort
to emulation of the RF propagation using direct solutions
of Maxwell’s equations in typical human body fabric using
Finite Difference Time Domain (FDTD) [2], [10], [11].

Models for RSS or path-loss inside the human body can
be obtained [18]–[20], which provide a model for path-loss
and shadow fading. For the calculation of TOA, since for
a given location of a transmitter and a receiver on the sur-
face of the body, radio wave propagates through different
organs and since the speed of propagation in each organ is
different, the exact speed of the RF waves cannot be accu-
rately estimated. In practice if we use an average speed of
propagation, it causes another source of error in distance
measurement [21], [22]. Both existing models for the RSS
and TOA do not provide the spatial correlation of the RSS
in neighboring points. The spatial correlation properties are
needed for modeling a sequence of RSS or TOA characteris-
tics as the microbot moves along the path of small intestine.
Another model needed for the localization inside the human
body is the effect of the body’s normal functions such as
breathing, heartbeats and other motions [23]. Integration of
these models into the channel models for radio propagation
from inside to the surface of the human body, which is needed
for our application requires additional research.

V. RF AND VISUAL EMULATION ENVIRONMENT
The RF and visualization emulation environment uses the
results of modeling of the VCE movement from clinical
data (section 4.1) and RF waveform transmission modeling
(section 4.2) to design and integrate a hardware/software
platform for emulation of RF propagation and images taken
by the VCE along a 3D anatomic image of the small intestine
(Figure 1, HW/SW Emulation Environment). Once we
can emulate RF propagation inside the body, and we have a
3D visualization system showing inside of the small intestine
as well as the location of the capsule. Therefore, we can
‘‘virtually’’ visualize VCE movement on its path in the small
intestine and compare the accuracy of complex alternative
algorithms. The feedback path to the emulation environment
of the CPS comes from limited clinical measurements on
human subjects with RF sensors and VCE camera (Figure 1,
Clinical Data Acquisition) to be used for fine-tuning of the
models and adjustment of complexity of algorithms. This way
the CPS allows validated virtual experimentations inside the
body without intruding the body with sizable equipment and
with reasonable clinical experiments.

Once the model for VCE motion and empirical models for
radio propagation from the VCE are established, we need to
import an anatomic path of movements for the VCE inside the
small intestine so that we can analyze the waveforms received
on the body-mounted sensors and generate the images that
the camera takes as the capsule moves through the small
intestine. Based on the 3D anatomic model of the large and
small intestines (Figure 3a), we can generate a 3D Computer
Aided Design (CAD) digital model of the intestinal tract
(Figure 3b). We can use this image to track the path of
the capsule (Figure 3c). An important and challenging part
of this process is determining the path. We can trace the
center of the intestine volume, which is similar to a curled
tube, in order to model VCE movement using 3D image
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FIGURE 3. (a) The 3D model of the small and large intestine anatomy, (b) the 3D digittized
CAD model and (c) the 3D model for the path of movement of the capsule.

FIGURE 4. (a) a sample 2D image from the VCE (b) a 2D image taken from 3D reconstruction in the
visualization testbed.

processing techniques. The large intestine has a very clear
pattern that looks like a large hook, and so we apply the 3D
skeletonization technique [24] to extract the path. Because
the shape of the small intestine is much more complicated,
we can develop an element sliding technique [24] to trace the
path. Then, we can import the 3D digitized CADmodel of the
intestines (Figure 3b) into MATLAB and emulate a camera
inside it to simulate the VCE images as the microbot travels
along the small intestine.

In MATLAB we can add textures similar to the internal
walls of the small intestine observed in the images sent from
the VCE. (Figure 4a) shows a sample image from inside the
small intestine of an eight-year-old child [25], (Figure 4b)
shows an image from a camera inside the emulated small
intestine [26]. This study demonstrates that we can simulate
the images inside the intestines with reasonable textures.
(Figure 4c) shows detected features of the images which are
used formotion estimation algorithms described in (Figure 2)
of section 4.1. The results can be visualized in a virtual plat-
form, for example the one that exists at the NIST [19], [20],
to visualize the movements of the capsule inside the small
intestine.

To emulate the RF design environment to comple-
ment our visualization platform of the CPS, we can
use a hardware channel simulation platform, for example
PROPSIM C8 [27], [28]. The results of waveform transmis-
sionmodeling can be used in RF channel emulation hardware.

The channel emulator PROPSIM C8 can be used to emu-
late multiple RF channels representing the propagation envi-
ronment between the microbot and multiple body mounted
sensors. These channels will emulate the RF propagation
environment between the VCE chipset development module
and the sensor development modules.

The waveform observed by the sensors can be processed
for detection of features of the signal pertinent to localization
(RSS, TOA and DOA). These features of the signal will
be used by RF localization algorithms in the next section
to determine the estimated 3D location of the capsule. The
location estimate will be reported to the visualization sys-
tem and mapped on the virtual map of interior of the small
intestine, along with the actual location provided by the
movement model. Different sensor network topologies can be
simulated by this testbed and used for real-time comparative
performance analysis of alternative algorithms to achieve
the desirable localization accuracies. Using the emulation
environment of our CPS will allow comparative performance
evaluation necessary for design and analysis for optimal solu-
tions to the problem.

VI. BODY SLAM AND 3D IMAGING ALGORITHMS
The algorithm design unit of the CPS (Figure 1; Body-SLAM
and 3D Imaging) takes advantage of the emulated envi-
ronment and the path to design the optimum Body-SLAM
algorithm for a given emulated environment. Initially, this
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environment is an anatomic path and emulated pictures and
it changes as we go along to the actual estimated path from
a live human and reconstruction of the real interior of the
small intestine of a live subject based on the images taken
by the VCE and the RF data that is collected from sample
human subjects. There are two sets of algorithms, (1) The
Body-SLAM for simultaneous localization and mapping of
the 3D path of the microbot using motion estimates from the
images and 3D RF localization. (2) Algorithms for recon-
structing the 3D image of the small intestine from 2D images
from the microbot’s camera.

A. DESIGN OF BODY-SLAM FOR HYBRID
RF AND VISUAL LOCALIZATION
The theoretical accuracy of 3D RF localization inside stom-
ach and intestines to demonstrate the feasibility of designing
new algorithms for precise RF localization inside the
small intestine is available in the literature. The theoretical
Cramer-Rao Lower Bound (CRLB) of the variance of the esti-
mation error for RSS-based localization inside these organs
using path-loss models reported by NIST [18]–[20] is avail-
able at [21] and [22]. A novel model for the accuracy of the
TOA-based localization affected by the non-homogeneous
fabric of human tissues and the CRLB of the accuracy of
TOA based localization using this model is also available
at [21] and [22]. These works provide the theoretical bounds
on the achievable 3D accuracy of RSS and TOA-based local-
ization of the VCE as a function of number of body-mounted
sensors in different organs. These results reveal that with
eight sensors, we can attain accuracies of around 12 cm
in 90% of locations for RSS-based localization, while
TOA-based localization provides accuracies on the order
of 2 cm. More importantly, TOA-based localization shows
much less sensitivity to the increase in number of sensors that
makes this approach more accurate, scalable and practical.
These precisions can be improved by designing algorithms,
which take advantage of hybrid localization to refine the
multipath profiles. Most recent research work on CRLB
for hybrid VCE localization shows that an overall accuracy
of 1-2 mm in 3D and a few centimeters in estimated traveled
length would be enabled by implementation of the combina-
tion of image based VCE tracking and TOA based RF local-
ization [29]. (Figure 5) plots the hybrid localization accuracy
against the VCE video frame counts. Given 10% of step esti-
mation error and 10o of direction estimation error, the hybrid
VCE localization only suffers from sub-millimeter level of
in accuracy. The performance bound shows the feasibility of
Body-SLAM algorithm and further research in this area is
needed to determine different alternatives for implementation
of the Body-SLAM to attain very precise localization needed
for 3D reconstruction of the interior of the small intestine.

1) DESIGNING RELIABLE ALGORITHMS
FOR RF LOCALIZATION
Desinging RF localization in non-homogeneous environ-
ments, such as human body, is at its infancy because channel

FIGURE 5. Pilot research on the theoretical performance bound for
Body-SLAM algorithm with TOA ranging.

modeling for localization inside the human body is at
its infancy. As previously explained, channel models are
required to characterize spatial and temporal variation of
the signal as a microbot moves along the intestine paths.
With a reliable model for RF propagation one can work to
find an algorithm for RF localization inside the human body
that can achieve a 3D (x,y,z) accuracy of approximately a
few centimeter. One candidate for reliable RF localization is
Super-resolution algorithms to refine TOA signal bandwidth
and achieve accurate estimate of direct path between trans-
mitter and receiver. In severe indoor multipath environment,
super-resolution algorithms have shown to be effective and
they have the potential to resolve the multipath components
in a bandwidth limited situation through advanced spec-
trum estimation techniques [30]. Since the FCC’s MedRadio
band [31], currently used in capsule endoscopy devices, only
spans 5 MHz, super-resolution can be a proper approach to
improve the localization accuracy for microbot application
when TOA based estimates are employed. One needs to
examine the effectiveness of super-resolution algorithms in
resolving multipath arrivals caused by signal deflections on
the boundaries of different organs to reduce the bandwidth
requirements for achieving sufficient accuracy and precision
to localize a microbot moving along the intestines.

Another candidate approach could be cooperative local-
ization algorithms using relative location of reference points
and multiple microbots inside the intestines. Cooperative
algorithms are widely used for localization in challenging
environments such as indoor areas [32], [33]. These algo-
rithms use the relative location of a number of reference
points with a few targets with fuzzy location estimates and use
the relative location of targets with each other to determine an
optimum location for all targets. Since endoscopy using mul-
tiple capsules has been examined for clinical purposes [9],
this is an important class of algorithms to use for perfor-
mance evaluation inside the human body. Preliminary results
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for bounds on the performance of cooperative localization
algorithms for RSS-based and TOA based localization [22]
for the VCE are very promising. Further research is needed
to modify these algorithms for cooperative localization to
be applied to the microbot localization inside the intestines.
One needs to administer different numbers of microbots in
different time intervals and measure the improvement in the
accuracy of localization. The outcome of this research is a
robust RF localization algorithm that, when used on each set
of waveforms for a given location of the microbot along the
path, the algorithm can estimate the 3D (x,y,z) location of
the capsule with approximately 1 cm of accuracy from its
simulated location.

2) DESIGNING THE BODY-SLAM
It is well established that the data fusion of multiple indepen-
dent location estimates can enhance localization performance
to the maximum [24]. At the same time, two typical estimates
of microbot location can be achieved including (1) dynamic
measurement of microbot velocity and heading angles (see
section 4.1), which can be used to track microbot but suffers
from the drifting effect due to the accumulation of tracking
error; (2) absolute RF based localization in (previous section),
which suffers from the randomly fading nature of in-body
RF channel. Once we combine the knowledge of microbot
location from above mentioned independent sources, the dis-
advantage of each approach can be compensated by each
other and microbot localization performance can be opti-
mized from the perspective of non-linear filtering, and there-
fore, achieve ultimate microbot localization accuracy needed
for reconstruction of the path of movement of the microbot.

The Body-SLAM algorithm integrates the RF localization
algorithm discussed in previous section for the 3D (x,y,z)
localization and motion estimation results from section 4.1.
One can use Bayesian Updates [35]–[38], Kalman [15], [39]
and particle filters for this integration to obtain the location
and reconstruct the path of movement simultaneously. These
algorithms leverage the drifting effect in VCE movement
path estimation using velocity model with the 3D location
estimates and vice versa. The results of applying these filters
are very promising since these methods show the potential
to smooth the localization path while reducing the 3D (x,y,z)
error by up to an order of magnitude [15]. In the localization
literature, these classes of algorithms are known as SLAM
algorithms [34]. In our application, since we are using the
algorithm for inside the human body, it is named as Body-
SLAM algorithm [13]–[15]. With an order of magnitude
improvement on the results of RF localization inside the
human body, one should be able to reach accuracies within a
few millimeter which allow a reasonable accuracy for recon-
struction of the 3D path of movement of the VCE inside
the small intestine. In the CPS validation and visualization
of this performance is performed by comparing clinical data
and emulated images. If the performance of Body-SLAM
algorithms does not meet the benchmark, one may need
to combine these algorithms with the inertial measurement

techniques using micro gyroscopes, accelerometers and
manometers to further improve the performance. A number
of these techniques which have been examined for indoor
geolocation and indoor robotics applications have also been
tested for VCE localization [40]–[44].

3) CLINICAL VALIDATION OF THE BODY-SLAM ACCURACY
Our co-authors at UMass Medical School have recently
completed an IRB-approved pilot study with 30 volun-
teers designed to validate new software associated with a
new video capsule (EC-10 from Olympus Corp, Tokyo,
Japan) [12]. The software was designed to measure RF local-
ization using TOA of the signal from the capsule in three
dimensions. Validation was achieved by taking 5 sets of
sequential abdominal images (AP and lateral) per patient at
15% of the standard dose required for routine abdominal
digital radiographs. The capsule and 6 radio-opaque points
on the antenna on the body surface were easily detected at
the reduced dose (Figure 1, RF Data). Pairs of radiographs
(AP and lateral view) were taken at 30 minute intervals after
the capsule had passed the pylorus, as confirmed by the real
time viewer on the data recorder. The time clock on the
recorder and hence each digital image from the video capsule
was synchronized to the time of each radiological image. The
3D(x,y,z) error as calculated for each of the 5 points was
± 2cm compared with that calculated by the software. The
CPS follows the same methodology to validate the accuracy
of the hybrid RF and visual Body-SLAM algorithms used
to reconstruct the 3D path of movement of the microbot
inside the small intestine. Ultimately, the accuracy of this
path is a guide to the measurement of true distance of a
pathological lesion, detected by images, from a fixed point,
the pylorus. The clinical data in the CPS provides a guide
for refining models for motion and RF propagation as well
as details of emulated visual platform used for design of
algorithms. This set up allows for massive experimentation
in a repeatable environment for algorithms design and limited
experimentation on human subjects.

B. RECONSTRUCTION OF THE SMALL INTESTINE
In this section, we explain how one can design algo-
rithms to utilize the robust in-body localization result from
Body-SLAM algorithm and propose a systematic approach
to construct the 3D representation of interior of small intes-
tine environment. This algorithm synthesizes the VCE image
stream to create discrete 3D surface model of small intestine
wall and then exploit the predicted VCE movement path to
reconstruct the 3D representation that can be used for anatom-
ical visualization of interior of the human body by clinicians.
Existing endoscopic based human organ 3D reconstructions
require either the multi-view image sequences [45], [46] or
the precise prior knowledge of camera movement path and
organ shape [14], [15], [47]. Pilot researches on laryngo-
scope [48] show that it is possible to reconstruct the 3D
representation of human airway with images manually taken
from multiple views. Similar researches on cystoscopy [49]

2738 VOLUME 3, 2015



K. Pahlavan et al.: Novel CPS for 3-D Imaging of the Small Intestine In Vivo

FIGURE 6. Discrete 3D surface model for individual VCE images along the movement path from Body-SLAM algorithm.

also illustrate that geometric constraints on the organ shape
can benefit the reconstruction of human bladder. When trying
to reconstruct the interior of small intestine, none of those two
requirements can be completely satisfied. On the one hand,
only monocular image can be obtained during the ‘‘voyage’’
of VCE since it passively goes through the small intestine and
no manual actuation can be applied to the capsule. On the
other hand, the estimated VCE movement path from Body-
SLAM algorithm still suffers uncertainty. It is also worth
mentioning that both cystoscopy and laryngoscopy based
approaches work on relatively static and rigid scene while
VCE based 3D reconstruction deals with dynamic and non-
rigid scene caused by intestinal movement, which makes the
problem extraordinarily complex and challenging demanding
additional fundamental research.

1) PHOTO SYNTHESIS BASED 3D RECONSTRUCTION
OF SMALL INTESTINE
Similar to most of the existing endoscopic based human
organ 3D reconstructions, one can begin from single image
Shape-from-Shading (SfS) [50], [51] algorithm to obtain
individual depth map as the discrete 3D surface model
(Figure 6). The discrete 3D surface model for each indi-
vidual VCE image only contains relative depth informa-
tion, which has an unknown offset from the reference plane.
To calculate the offset, one can use a partial stereo monocular
calibration approach using the camera location information

from Body-SLAM algorithm. The partial stereo approach
runs on the overlapped portion of two consecutive VCE
images. To find the overlapped portion, Canny Edge
Detection [52] (CED) with noise filtering can be applied
to VCE images to get prominent and salient features and
Coherent Point Drift [53] (CPD) algorithm may be used for
non-rigid point matching. With a properly calculated off-
set, calibrated 3D surface model is obtained, which can be
directly used in 3D reconstruction. Finally, using the esti-
mated VCEmovement path from the Body-SLAM algorithm,
one may implement volumetric based dynamic registration
and update algorithm to fuse the calibrated individual 3D
surface models into a continuous and complete 3D represen-
tation of interior small intestine.

2) MODELING THE EFFECTS OF STEREO CAMERAS OF VCE
VCE design is experiencing the revolution from monocular
camera to stereo camera in the pursuit of superior sharp-
ness and resolution. Such revolution can also significantly
simplify the aforementioned 3D reconstruction approach.
VCE capsule with stereo cameras are already in the market,
for example Given Imaging ‘‘Colon2’’ with two cameras on
both ends of the capsule pill [54]; RF System Lab ‘‘Norika3’’
with 45o aligned rotatable camera [55]; or the latest RF
System Lab ‘‘Sayaka’’ with stereo camera sets located in the
middle of capsule pill, facing the intestine wall directly [56].
This revolution sets up challenges on understanding the
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characteristics of stereo camera systems. The CPS for 3D
representation of interior of small intestine is able to provide
us a virtual environment to emulate the VCE behavior under
various image processing related conditions including camera
sampling rate, camera numbers, camera heading direction
and camera locations on the capsule pill. One may begin the
CPS operation with monocular camera, isolate each factor
and establish statistical analysis on the localization error of
alternative algorithms for the Body-SLAM. Then one may
continue the investigation on 3D reconstruction with multi-
ple stereo cameras until we reach satisfactory reconstruction
accuracy. The analysis on stereo cameras can also guide the
future direction of VCE capsule design and implementation.

VII. CONCLUSION
3D visualization of the small intestine in vivo using pic-
tures taken from interior of this organ is a revolutionary
technology for medical imaging, research and education in
GI-tract. VCE’s take clear pictures of small intestine at rates
of at least two pictures per second, but precision of current
localization techniques inside the human body cannot pro-
vide millimeteric accuracies needed for reconstruction of the
3D images from the 2D pictures. Precise localization in vivo
inside the small intestine is difficult because we do not have
any idea of the shape of the organ that governs the path of
movement of the VCE, we have no model for the motions
of the VCE inside the small intestine, we have no validated
model for RF propagation inside the human body, and we
cannot performmassive visual and RF experimentation inside
the human body. We presented a novel concept for a CPS
that can solve this challenging problem. The CPS models the
motions inside the small intestine using sequence of images
taken by the VCE and models RF propagation inside the
human body using FDTD. Using these models, an anatomic
path of movement for the VCE, and massive visual and RF
experimentation, the CPS designs algorithms with 1-2 mm
precision and applies them on limited human bodies with
clinical experimentation to create their path of movement in
vivo. The result of the clinical visual and RF experimentation
is then used to refine models for motion and RF propagation
to tune the algorithms until it reaches precision required for
3D reconstruction of the small intestine in vivo.

REFERENCES
[1] C. McCaffrey, O. Chevalerias, C. O’Mathuna, and K. Twomey,

‘‘Swallowable-capsule technology,’’ IEEEPervasive Comput., vol. 7, no. 1,
pp. 23–29, Jan./Mar. 2008.

[2] K. Pahlavan, Y. Ye, U. Khan, and R. Fu, ‘‘RF localization inside human
body: Enabling micro-robotic navigation for medical applications,’’ in
Proc. Int. Conf. Localization GNSS (ICL-GNSS), Jun. 2011, pp. 133–139.

[3] S. Martel, ‘‘Journey to the center of a tumor,’’ IEEE Spectr., vol. 49, no. 10,
pp. 48–53, Oct. 2012.

[4] R. Courtland, ‘‘Medical microbots take a fantastic voyage into reality,’’
IEEE Spectr., vol. 52, no. 6, pp. 70–72, Jun. 2015.

[5] T. D. Than, G. Alici, H. Zhou, andW. Li, ‘‘A review of localization systems
for robotic endoscopic capsules,’’ IEEE Trans. Biomed. Eng., vol. 59, no. 9,
pp. 2387–2399, Sep. 2012.

[6] G. Iddan, G. Meron, A. Glukhovsky, and P. Swain, ‘‘Wireless capsule
endoscopy,’’ Nature, vol. 405, no. 6785, p. 417, 2000.

[7] G. Costamagna et al., ‘‘A prospective trial comparing small bowel radio-
graphs and video capsule endoscopy for suspected small bowel disease,’’
Gastroenterology, vol. 123, no. 4, pp. 999–1005, Oct. 2002.

[8] D. R. Cave et al., ‘‘A multicenter randomized comparison of the endo-
capsule and the pillcam SB,’’ Gastrointestinal Endoscopy, vol. 68, no. 3,
pp. 487–494, Sep. 2008.

[9] M. Keroack, ‘‘Video capsule endoscopy,’’Current Opinion Gastroenterol.,
vol. 20, no. 5, pp. 474–481, 2004.

[10] K. Pahlavan, Y. Ye, R. Fu, and U. Khan, ‘‘Challenges in channel mea-
surement and modeling for RF localization inside the human body,’’ Int.
J. Embedded Real-Time Commun. Syst., vol. 3, no. 3, pp. 18–37, 2012.

[11] K. Pahlavan et al., ‘‘RF localization for wireless video capsule endoscopy,’’
Int. J. Wireless Inf. Netw., vol. 19, no. 4, pp. 326–340, Dec. 2012.

[12] N. Marya, A. Karellas, A. Foley, A. Roychowdhury, and D. Cave, ‘‘Com-
puterized 3-dimensional localization of a video capsule in the abdominal
cavity: Validation by digital radiography,’’ Gastrointestinal Endoscopy,
vol. 79, no. 4, pp. 669–674, Apr. 2014.

[13] Y.Geng andK. Pahlavan, ‘‘Design, implementation and fundamental limits
of image and RF based wireless capsule endoscopy hybrid localization,’’
IEEE Trans. Mobile Comput., vol. PP, no. 99, pp. 1–14.

[14] G. Bao, ‘‘On simultaneous localization and mapping inside the human
body (body-SLAM),’’ Ph.D. dissertation, Dept. Elect. Comput. Eng.,
Worcester Polytech. Inst., Worcester, MA, USA, 2014.

[15] G. Bao, K. Pahlavan, and L. Mi, ‘‘Hybrid localization of microrobotic
endoscopic capsule inside small intestine by data fusion of vision and RF
sensors,’’ IEEE Sensors J., vol. 15, no. 5, pp. 2669–2678, May 2015.

[16] F. Vilarino, P. Spyridonos, F. DeIorio, J. Vitria, F. Azpiroz, and P. Radeva,
‘‘Intestinal motility assessment with video capsule endoscopy: Automatic
annotation of phasic intestinal contractions,’’ IEEE Trans. Med. Imag.,
vol. 29, no. 2, pp. 246–259, Feb. 2010.

[17] K. Pahlavan and P. Krishnamurthy, Principles of Wireless Access and
Localization. New York, NY, USA: Wiley, 2013.

[18] K. Y. Yazdandoost and K. Sayrafian-Pour, Channel Model for Body Area
Network (BAN), IEEE Standard P802.15, Apr. 2009.

[19] K. Sayrafian-Pour, W.-B. Yang, J. Hagedorn, J. Terrill, and
K. Y. Yazdandoost, ‘‘A statistical path loss model for medical implant
communication channels,’’ in Proc. IEEE 20th Int. Symp. Pers., Indoor
Mobile Radio Commun., Sep. 2009, pp. 2995–2999.

[20] K. Sayrafian-Pour, W.-B. Yang, J. Hagedorn, J. Terrill, K. Y. Yazdandoost,
and K. Hamaguchi, ‘‘Channel models for medical implant communica-
tion,’’ Int. J. Wireless Inf. Netw., vol. 17, no. 3, pp. 105–112, Dec. 2010.

[21] Y. Ye, P. Swar, K. Pahlavan, and K. Ghaboosi, ‘‘Accuracy of RSS-based
RF localization in multi-capsule endoscopy,’’ Int. J. Wireless Inf. Netw.,
vol. 19, no. 3, pp. 229–238, Sep. 2012.

[22] Y. Ye, K. Pahlavan, G. Bao, P. Swar, and K. Ghaboosi, ‘‘Comparative
performance evaluation of RF localization for wireless capsule endoscopy
applications,’’ Int. J. Wireless Inf. Netw., vol. 21, no. 3, pp. 208–222,
Sep. 2014.

[23] R. Fu, Y. Ye, and K. Pahlavan, ‘‘Characteristic and modeling of human
body motions for body area network applications,’’ Int. J. Wireless Inf.
Netw., vol. 19, no. 3, pp. 219–228, Sep. 2012.

[24] G. Bao, Y. Ye, U. Khan, X. Zheng, and K. Pahlavan, ‘‘Modeling of the
movement of the endoscopy capsule inside G.I. tract based on the captured
endoscopic images,’’ in Proc. Int. Conf. Modeling, Simulation Visualizat.
Methods, Las Vegas, NV, USA, 2012, pp. 1–5.

[25] P.M. Szczypiński, R. D. Sriram, P. V. J. Sriram, and N. Reddy, ‘‘Amodel of
deformable rings for interpretation of wireless capsule endoscopic videos,’’
Med. Image Anal., vol. 13, no. 2, pp. 312–324, Apr. 2009.

[26] L. Mi, G. Bao, and K. Pahlavan, ‘‘Design and validation of a virtual
environment for experimentation inside the small intestine,’’ in Proc. 8th
Int. Conf. Body Area Netw., 2013, pp. 35–40.

[27] Y. Geng, J. Chen, R. Fu, G. Bao, and K. Pahlavan, ‘‘Enlighten wear-
able physiological monitoring systems: On-body RF characteristics based
humanmotion classification using a support vector machine,’’ IEEE Trans.
Mobile Comput., vol. PP, no. 99, pp. 1–15.

[28] J. He, Y. Geng, Y. Wan, S. Li, and K. Pahlavan, ‘‘A cyber physical test-
bed for virtualization of RF access environment for body sensor network,’’
IEEE Sensors J., vol. 13, no. 10, pp. 3826–3836, Oct. 2013.

[29] Y. Geng and K. Pahlavan, ‘‘On the accuracy of RF and image processing
based hybrid localization for wireless capsule endoscopy,’’ in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 452–457.

[30] X. Li and K. Pahlavan, ‘‘Super-resolution TOA estimation with diversity
for indoor geolocation,’’ IEEE Trans. Wireless Commun., vol. 3, no. 1,
pp. 224–234, Jan. 2004.

2740 VOLUME 3, 2015



K. Pahlavan et al.: Novel CPS for 3-D Imaging of the Small Intestine In Vivo

[31] Medical Device Radiocommunications Service (MedRadio), Federal Com-
mun. Commission, Washington, DC, USA, Mar. 2009.

[32] Y. Ye, U. Khan, N. Alsindi, R. Fu, and K. Pahlavan, ‘‘On the accuracy of
RF positioning inmulti-capsule endoscopy,’’ inProc. IEEE 22nd Int. Symp.
Pers. Indoor Mobile Radio Commun. (PIMRC), Sep. 2011, pp. 2173–2177.

[33] B. Alavi and K. Pahlavan, ‘‘Modeling of the TOA-based distance measure-
ment error using UWB indoor radio measurements,’’ IEEE Commun. Lett.,
vol. 10, no. 4, pp. 275–277, Apr. 2006.

[34] M. W. M. G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte,
and M. Csorba, ‘‘A solution to the simultaneous localization and map
building (SLAM) problem,’’ IEEE Trans. Robot. Autom., vol. 17, no. 3,
pp. 229–241, Jun. 2001.

[35] E. S. Nadimi, V. Blanes-Vidal, and V. Tarokh, ‘‘Semidefinite
programming-based localization algorithm in networks with
inhomogeneous media,’’ in Proc. ACM Res. Appl. Comput. Symp.,
Oct. 2012, pp. 191–196.

[36] E. S. Nadimi and V. Tarokh, ‘‘Bayesian source localization in networks
with heterogeneous transmission medium,’’ Navigation, vol. 59, no. 3,
pp. 163–175, 2012.

[37] E. S. Nadimi, V. Blanes-Vidal, and V. Tarokh, ‘‘Asymptotic properties of
semidefinite programming-based localization algorithm in networks with
heterogeneous medium,’’ in Proc. IEEE TSP, Aug. 2012, pp. 1–5.

[38] E. S. Nadimi V. Blanes-Vidal, and V. Tarokh, ‘‘Localization of mobile
nodes based on inaccurate round-trip-time measurements using Bayesian
inference,’’ in Proc. ACM Symp. Res. Appl. Comput., 2011, pp. 152–157.

[39] M. Pourhomayoun, Z. Jin, and M. L. Fowler, ‘‘Accurate localization of
in-body medical implants based on spatial sparsity,’’ IEEE Trans. Biomed.
Eng., vol. 61, no. 2, pp. 590–597, Feb. 2014.

[40] C. Hu, M. Q-H. Meng, and M. Mandal, ‘‘Efficient magnetic localization
and orientation technique for capsule endoscopy,’’ Int. J. Inf. Acquisition,
vol. 2, no. 1, pp. 23–36, Mar. 2005.

[41] M. Salerno et al., ‘‘A discrete-time localization method for capsule
endoscopy based on on-board magnetic sensing,’’ Meas. Sci. Technol.,
vol. 23, no. 1, p. 015701, 2012.

[42] F. Carpi, S. Galbiati, and A. Carpi, ‘‘Controlled navigation of endoscopic
capsules: Concept and preliminary experimental investigations,’’ IEEE
Trans. Biomed. Eng., vol. 54, no. 11, pp. 2028–2036, Nov. 2007.

[43] F. Carpi, N. Kastelein, M. Talcott, and C. Pappone, ‘‘Magnetically con-
trollable gastrointestinal steering of video capsules,’’ IEEE Trans. Biomed.
Eng., vol. 58, no. 2, pp. 231–234, Feb. 2011.

[44] X. Wang, M. Q.-H. Meng, and C. Hu, ‘‘A localization method using
3-axis magnetoresistive sensors for tracking of capsule endoscope,’’
in Proc. 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBS),
Aug./Sep. 2006, pp. 2522–2525.

[45] A. Alomainy and Y. Hao, ‘‘Modeling and characterization of biotelemetric
radio channel from ingested implants considering organ contents,’’ IEEE
Trans. Antennas Propag., vol. 57, no. 4, pp. 999–1005, Apr. 2009.

[46] F. De Iorio et al., ‘‘Intestinal motor activity, endoluminal motion and
transit,’’ Neurogastroenterol. Motility, vol. 21, no. 12, pp. 1264-e119,
Dec. 2009.

[47] S. Li, Y. Geng, J. He, and K. Pahlavan, ‘‘Analysis of three-dimensional
maximum likelihood algorithm for capsule endoscopy localization,’’ in
Proc. Int. Conf. Biomed. Eng. Informat. (BMEI), Beijing, China, Oct. 2012,
pp. 721–725.

[48] E. M. Meisner, G. D. Hager, S. L. Ishman, D. Brown, D. E. Tunkel, and
M. Ishii, ‘‘Anatomical reconstructions of pediatric airways from endo-
scopic images: A pilot study of the accuracy of quantitative endoscopy,’’
Laryngoscope, vol. 123, no. 11, pp. 2880–2887, Nov. 2013.

[49] L. France et al., ‘‘A layered model of a virtual human intestine for surgery
simulation,’’ Med. Image Anal., vol. 9, no. 2, pp. 123–132, Apr. 2005.

[50] B. K. P. Horn, Obtaining Shape From Shading Information. Cambridge,
MA, USA: MIT Press, 1989.

[51] R. T. Frankot and R. Chellappa, ‘‘A method for enforcing integrability in
shape from shading algorithms,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 10, no. 4, pp. 439–451, Jul. 1988.

[52] J. Canny, ‘‘A computational approach to edge detection,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, Nov. 1986.

[53] A. Myronenko and X. Song, ‘‘Point set registration: Coherent point drift,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 12, pp. 2262–2275,
Dec. 2010.

[54] G. Ciuti, A. Menciassi, and P. Dario, ‘‘Capsule endoscopy: From cur-
rent achievements to open challenges,’’ IEEE Rev. Biomed. Eng., vol. 4,
pp. 59–72, Oct. 2011.

[55] V. K. Sharma, ‘‘The future is wireless: Advances in wireless diagnostic and
therapeutic technologies in gastroenterology,’’ Gastroenterology, vol. 137,
no. 2, pp. 434–439, 2009.

[56] D. Liu, M. Zhou, Y. Geng, and K. Pahlavan, ‘‘Power efficient relay
networking for BANs in non-homogeneous environment,’’ in Proc. Int.
Workshop Sensor Netw. Positioning Services, Beijing, China, Aug. 2015.

[57] D. Liu, Y. Geng, G. Liu, M. Zhou, and K. Pahlavan, ‘‘WBANs-Spa:
An energy efficient relay algorithm for wireless capsule endoscopy,’’ in
Proc. IEEE 82nd Veh. Technol. Conf., Boston, MA, USA, Sep. 2015.

KAVEH PAHLAVAN was a Westin Hadden Pro-
fessor of Electrical and Computer Engineering
with the Worcester Polytechnic Institute (WPI),
Worcester, MA, from 1993 to 1996. He is
currently a Professor of Electrical and Com-
puter Engineering, a Professor of Computer
Science, and the Director of the Center for Wire-
less Information Network Studies with WPI, and
the Chief Technical Advisor of Skyhook Wireless,
Boston, MA. He has authored the books entitled

Wireless Information Networks (John Wiley and Sons, 1995) and Wireless
Information Networks—Second Edition (John Wiley and Sons, 2005) (with
Allen Levesque); Principles of Wireless Networks—A Unified Approach
(Prentice Hall, 2002) (with P. Krishnamurthy); and Networking Fun-
damentals: Wide, Local, and Personal Communications (Wiley, 2009)
(with P. Krishnamurthy). His current area of research is opportunistic local-
ization for body area networks and robotics applications. He received the
Nokia Fellowship in 1999, and the first Fulbright-Nokia Scholar with the
University of Oulu, Finland, in 2000.

YISHUANG GENG received the B.S. degree
from Southeast University, Nanjing, China,
in 2011. He is currently pursuing the degree
with the Center for Wireless Information Network
Studies, Department of Electrical and Com-
puter Engineering, Worcester Polytechnic Insti-
tute. He has started to work on radio propagation
channel modeling and measurement for wireless
channel in body area network since 2011.
His research interests include body area network,

cyber physical system, and RF localization.

DAVID R. CAVE received the B.S. degree from
the University of London, U.K., in 1970, the
M.B. degree, and the Ph.D. degree in biolog-
ical sciences form the University of London,
in 1976. He was the Chief of Gastroenterology
with the St Elizabeth’s Medical Center from 1992
to 2005, and a Professor ofMedicine with the Tufts
University Medical School from 2002 to 2005.
He was the Board of Directors of Eli and Edythe
Broad Medical Foundation from 2001 to 2012.

He has been a Professor of Medicine with the University of Massachusetts
Medical School since 2005, and the Director of Clinical Gastroenterology
Research and Program Director for the GI Fellowship program. His research
interests include small intestinal imaging with capsule endoscopy and deep
enteroscopy and pathogenesis of inflammatory bowel disease. He received
the Residency and GI Fellowship from the University of Chicago from
1976 to 1979.

VOLUME 3, 2015 2741



K. Pahlavan et al.: Novel CPS for 3-D Imaging of the Small Intestine In Vivo

GUANQUN BAO received the B.S. degree
in information engineering from Zhejiang
University, Hangzhou, China, in 2008, and the
M.S. degree in electrical engineering from the
University of Toledo, OH, USA, in 2011. He is
currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineer-
ing, Worcester Polytechnic Institute, Worcester,
MA. His previous research interests include image
processing and computer vision. His current

research interests include wireless networks, indoor geo-location, and chan-
nel modeling for body area networks.

LIANG MI received the B.S. degree in remote
sensing science and technology from the Harbin
Institute of Technology, Harbin, China. He is
currently pursuing the master’s degree with the
Department of Electrical and Computer Engi-
neering, Worcester Polytechnic Institute, Worces-
ter, MA, USA. His previous research interests
include remote sensing image processing. His cur-
rent research interest is environment emulation for
body area networks.

EMMANUEL AGU received the Ph.D. degree in
electrical and computer engineering from the Uni-
versity of Massachusetts Amherst, Amherst, MA,
USA, in 2001. He has been involved in research
on mobile and ubiquitous computing for over
16 years. He is currently an Associate Professor
with the Computer ScienceDepartment,Worcester
Polytechnic Institute, Worcester, MA, USA. He is
working onmobile health projects to assist patients
with diabetes, obesity, and depression.

ANDREW KARELLAS received the Ph.D. degree
in medical physics from the University of
California at Los Angeles. He is currently a Pro-
fessor of Radiology, and the Director of Radiolog-
ical Physics with the University of Massachusetts
Medical School. His research interests include
the development of novel X-ray imaging sys-
tems for digital mammography, body and cardiac
fluoroscopy, tomosynthesis, and tomographic
imaging. He has published extensively in medical

imaging and holds several patents in the field. He is a fellow of the American
Association of Physicists in Medicine, and he is certified in Diagnostic
Radiological Physics by the American Board of Radiology. He has received
numerous honors and distinctions from various scientific and professional
organizations.

KAMRAN SAYRAFIAN received the B.S. degree
from the Sharif University of Technology, theM.S.
degree from Villanova University, and the Ph.D.
degree from the University of Maryland, all in
electrical and computer engineering. He was the
Co-Founder of Zagros Networks, Inc., a fabless
semiconductor company based in Rockville, MD,
where he served as the President and a Senior
Member of the architecture team. Since 2004, he
has been an Adjunct Faculty Member with the

University of Maryland, where he received the 2010 Outstanding Teaching
Award. He is currently leading a strategic Program at the Information Tech-
nology Laboratory of the National Institute of Standards and Technology,
MD, USA. He holds four U.S. patents. He has published over 100 conference
and journal papers, and book chapters. His research interests include body
area networks, mobile sensor networks, and RF-based indoor positioning. He
was a recipient of the 2015 U.S. Department of Commerce Bronze Medal
Award for his contribution to the field of body area networking. He has
served as the Organizer, Co-Chair, and Technical Advisory Board Member
of several international IEEE conferences and workshops.

VAHID TAROKH was with AT&T Labs-Research
and AT&T wireless services until 2000, where
he was the Head of the Department of Wireless
Communications and Signal Processing. In 2000,
he joined the Department of Electrical Engineer-
ing and Computer Sciences, MIT, as an Associate
Professor. In 2002, he joined Harvard University
as a Gordon McKay Professor of Electrical Engi-
neering. Since 2005, he has been a Hammond
Vinton Hayes Senior Fellow of Electrical Engi-

neering with Harvard University. His output of the last 20 years is sum-
marized in about 60 research journal papers that have been cited almost
40 000 times by other scholars. He is a recipient of a number of awards, and
holds two honorary degrees.

2742 VOLUME 3, 2015


