Augmenting Learning
Mobile Simulation Games for Learning

Eric Klopfer
MIT Scheller Teacher Education Program
Media Lab
The Education Arcade

Mobile Games

- Facilitate a new type of game
 - Don’t just port big games to the small screen - situate games
- Combining constructivist and situated learning paradigms.
- Mobile learning games can be:
 - Social
 - Authentic and Meaningful
 - Connected to the Real World
 - Open-Ended/Multiple Pathways
 - Intrinsically Motivating
 - Filled with Feedback
Learning Goals

- **K-16 - 21st Century Skills**
 - Engage in authentic science
 - Foster collaborative learning and communication
 - Capitalize on game play motivation
 - Solve complex problems with complex solutions
- **Informal Education**
 - Encourage deeper and broader interaction
 - Connect with real surroundings
 - Connect and collaborate with others
- **Training**
 - Promote teamwork and collaboration
 - Facilitate role playing
 - Provide new perspectives on real problems
 - Allow safe play

Augmented Reality

Computer simulation on handheld computer triggered by real world location

- Combines physical & virtual world contexts
- Embeds learners in authentic situations
- Engages users in a socially facilitated context
Heavy v. Light

• Imagine that MIT is...

Contaminated with a Toxin

An Underwater Aquarium

AR: Environmental Detectives

• First Example - Part of G2T
• “Environmental Detectives”
 • Players briefed about rash of local health problems linked to the environment
 • Need to determine source of pollution by drilling sampling wells, interviewing virtual witnesses
Benefits of location basis

- **We can make multiplayer online games that recreate the locations and problem-solving in AR games, BUT**
- **Communicating face to face** is different from online.
- **Ability to use the environment** differs
- **Different criteria are applied** in decision-making

Outdoor AR: Features

- **Scenarios can include one or multiple player roles**
- **Participants interview virtual characters** by walking to their real world location (audio, video, images and text).
- **Collect data** from underlying models using simulated equipment and gather information from items within the game.
- **Gates** allow participants in outdoor simulations to enter real buildings.
- **Collect evidence** for optional in-game conclusions or to prepare for off-line discussion.
Outdoor AR Toolkit

- Map-based tool
- Grab map from Google Maps
- Insert into map and GPS coordinates into game

AR Games’ Portability & Customization

- Across wide range of subjects...
 - Public Health/Disease Outbreak (Charles RiverCity & Avian Bird Flu)
 - Forensics (Mad City Murder)
 - Historical Exploration (Battle of Lexington)
 - Mathematics (Alien Contact)
 - Economics (Hip-Hop Tycoon)
- ...across locations
 - Local Communities (e.g., geographical tours)
 - Schools
 - Museums
 - Science Centers
 - Zoos/Nature Conserves
- ...and across time
 - Beyond normal “class time”
 - Over extended period of time
Mystery @ The Museum

Analyze

Communicate

Investigate

Decide

Mysterious Game Play

Parents and Kids Collaborating

Fostering Collaboration Through Roles

Using Contextual Information

Collecting Virtual Samples
POSIT

Game is focused around a single yes/no policy question (fictionalized). For example, “Should we build a biohazard level 4 research facility in our community?”

- **Briefing** - Potential biohazard facility in Boston
- **Roles** - Playing realistic roles from scientist to resident
- **Initial Opinion** - Opinions “in role” are registered
- **Collecting Data** - Players collect information from virtual characters, and real artifacts/places
- **Sharing Opinions** - Players share information that they have collected to convince others of their (character’s) point of view
- **Influencing Others and Changing Opinions** - Influence key individuals to sway the vote
- **Final Decision** - voting

Issues Looking Forward

- **Weather/Seasons**
 - Need indoor equivalents to outdoor positioning for our partner organizations (zoos, gardens, schools, etc.) to feel comfortable that they can run indoors in event of weather.
- **Urban Campuses**
 - Again we need indoor (course scale) positioning when there are more buildings than open spaces to run games.
Issues Looking Forward

- **Finer Grain Positioning**
 - For both indoor and outdoor positioning it would be useful to have finer grained positioning so that we could use objects instead of areas or rooms as our unit.
 - But this needs to work without additional infrastructure or setup.

- **Standardization and Abstraction**
 - Need to make cross-platform application development and deployment easier.

Thanks to:
- US Department of Education and Microsoft iCampus
- TEP MEng and UROPs

- education@mit.edu
- http://education.mit.edu/ar
- http://educationarcade.org