Pilot Symbol Based Detection and Synchronization for OFDM WLANs

Alan Coulson Communications Team Industrial Research Ltd New Zealand

Introduction

- Detection and synchronization: problem definitions
- □ Pilot symbol assisted reception
- □ Correlation-based algorithms: descriptions
- Detection and synchronization: performance results
- □ Bit error rate performance: comparison of ideal, analytical and simulation results

The Detection Problem

The Synchronization Problem

The Tools

1. Pilot Symbol

(a) Basic OFDM Packet for Frequency Flat Fading Channel

PRBS	PRBS	OFDM_1	OFDM_2		OFDM_N	Trailer
Pilot Symbol			OFDM Blo	ck		

(b) OFDM Packet for Time-Dispersive (Frequency-Selective) Channel

PRBS	PRBS		OFDM_1		OFDM_2				OFDM_N	•	Trailer	
Pilot Symbol			OFDM Block Guard interval / cyclic prefix							/		

The Tools

2. OFDM Receiver Architecture

Received Signal: $r^{\delta}(t) = r(t) \exp(j[2 t+]) (t-nT-)$

The Algorithms (1)

Received sampled signal (flat fading), *n***th sample** $r_n = as(nT - \tau_s)e^{-j[2\pi\nu(nT - \tau_s) + \theta]} + \eta(nT)$

- L length, L lag sliding window correlation product $P_{l} = \mathbf{r}_{l}^{H} \mathbf{r}_{l+L}$ $\approx (L - |l|) a^{2} S^{2} e^{-j2\pi vLT} + \eta$
- L length, 0 lag sliding window correlation product $R_l = \mathbf{r}_l^H \mathbf{r}_l$ $\approx L(a^2 S^2 + 2\sigma_w^2) + \operatorname{Re}\{\eta\}$

The Algorithms (2)

Detection variable 1 (positive means detection)

$$X_l = \left| P_l \right| - T_{C1} \sqrt{R_l R_{l+L}}$$

Frequency offset estimate

$$\hat{\mathcal{V}} = \frac{1}{2\pi LT} \operatorname{atan}\left(\frac{\operatorname{Im}\{P_l\}}{\operatorname{Re}\{P_l\}}\right)$$

L length matched filter correlation product $Q_l = \mathbf{n}^H \mathbf{r}_l$

$$\approx LaS^{2}\operatorname{sinc}\left(l - \frac{\tau_{S}}{T}\right)e^{-j\left[2\pi\nu(lT - \tau_{S}) + \theta + \phi\frac{L-1}{2L}\right]} + \sqrt{LS\eta}$$

The Algorithms (3)

Detection variable 2 (positive means detection)

$$Y_{l} = |Q_{l} + Q_{l+1}| - T_{C2}\sqrt{L}S\sqrt{R_{l}}$$

Phase offset estimate

$$\hat{\theta} = \operatorname{atan}\left(\frac{\operatorname{Im}\{Q_l\}}{\operatorname{Re}\{Q_l\}}\right)$$

Timing offset estimate:

MMSE fit to phase of frequency domain data

Results: Detection 1

1. Detection statistics

2. Experimental comparison

Results: Frequency Offset Estimation

(a) Frequency Offset Estimation Error Variance

Results: Detection 2

(a) Start of Packet Detection Probability $p_{Y}(|\Box_{0}^{"}|^{2}>T_{C}^{2})$, $T_{C}^{2}=0.8$

Results: Composite Detection

Results: Phase Offset Estimation

Phase Offset Estimation Error Density, SNR=20dB

Demonstration System

OFDM Tx spectrum

Prototype set-up

Results: Experimental Data 1

Results: Experimental Data 2

Bit Error Rate Performance: Analytical

BER for BPSK OFDM with frequency-, phase- and timingoffset estimation errors in an AWGN channel is

$$p_{e}(\gamma_{b}) = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} \int_{-T/2}^{T/2} \frac{1}{2} \operatorname{erfc} \left(\frac{\mu w_{0} w_{P} w_{T}}{\sqrt{2 \left(\sigma^{2} + \sigma_{ISI}^{2}\right)}} \right)$$
$$\times p_{\tau}(\tau) p_{\alpha}(\alpha) p_{\phi}(\phi) d\tau d\alpha d\phi.$$

where second line functions are densities of parameter estimation errors

Bit Error Rate Performance: Results

Summary

- Detection and synchronization: fundamental to WLAN operation
- Pilot symbol assisted reception using correlationbased algorithms: analysis facilitates setting of key threshold parameters
- Bit error rate performance: analytical and simulation results closely approach ideal BPSK in an AWGN channel.

