Recent Trends in Ultra Wideband Communications Systems

Robert J. Fontana, Ph.D.

Multispectral Solutions, Inc. Germantown, Maryland USA

rfontana@multispectral.com http://www.multispectral.com

Recent Trends in Ultra Wideband Communications Systems-1

UWB Communications Systems

- What is UWB?
- Brief history of UWB communications
- Examples of recently developed UWB systems
 - Full duplex voice and data communications
 - High-speed video relay
 - Non line-of-sight UWB transceiver for extended ranges
 (> 60 nmi) over water
 - UWB tags
 - Tactical range, wireless *ad hoc* networks
- Comments on recent controversies over proposed commercial use of UWB technology under FCC Part 15 rules

What is Ultra Wideband?

- Short pulse waveforms
 - "Carrier-free", "baseband", "impulse"
 - A few cycles of an RF carrier
- Very large fractional bandwidths
 - Bandwidth inversely proportional to pulse duration
 - Typically > 25% (DARPA 1990 definition)
 - Low duty cycles resulting in low average energy densities
- Typically produced by "impulse- or stepexcited" antennas, filters, etc.
 - Not all UWB created equal (Regulatory issues)
 - Spectrally filtered
 - Spectrally unfiltered

Time response

UWB Technology Development

2000	2001 MSSI awarded 50th UWB contract
	1994 First UNCLASSIFIED UWB communications programs
1990	— 1990 OSD/DARPA "Assessment of Ultra-Wideband (UWB) Technology"
	1986 First fielded "short pulse" UWB Communications system (Ross/Fontana)
1980	Ross et al. – First demonstrated (free space) UWB communications system 1978 Bennett & Ross – "Time-Domain Electromagnetics and Its Applications" – Seminal paper Morey – Eurodamental patent on UWB GPB U.S. Patent No. 3 806 795 (April 1973)
1970	1973 Ross – Fundamental patent on UWB communications U.S. Patent No. 3,728,632 (April 1973) 1972 Robbins – Fundamental patent on single-pulse, quantum tunneling detector
1060	1965 G. Ross – Sperry Research development of UWB technology (1965-1980) 1963 G. Ross – Ph.D. thesis (with A. Papoulis) on time-domain electromagnetics
1900	Late 1950's Need for impulse response analysis of microwave N-ports (Lincoln Lab, Sperry, others)
1950	

UWB Communications Full duplex voice and data communications

Design Characteristics

- LPI/D digital voice/data radio
- Full duplex
- Packet burst, CSMA-CD
- 128 kb/s (CVSD voice), 115.2 kb/s (data)
- 1W peak
- 400 MHz instantaneous bandwidth
 - Unique, spectrally shaped waveform design
 - L-band center frequency
 - 27% fractional BW (IBW/fo)
- Range
 - 1-2 km with low profile, omni antennas (depending upon terrain)
 - 5+ mile performance with higher gain antennas

UWB Communications High-speed video relay

Design Characteristics

- LPI/D command & control uplink and video downlink for UAVs and ground robots
- Full duplex TDMA packet burst
 - C&C uplink (115.2 kb/s)
 - Video downlink (1-25 Mb/s compressed)
- 2W peak ERP
- 400 MHz instantaneous bandwidth
 - Spectrally shaped waveform design
 - L-band center frequency
 - C-band version developed but not fielded
 - 27% fractional BW (IBW/fo)
- Range
 - 5 miles LOS, omni antennas

UWB Communications Non line-of-sight UWB transceiver

Design Characteristics

- Non-LOS radio using surface/ground wave propagation
- Full duplex voice/video
- 850 kb/s (compressed video)
- 120W peak, low VHF (30-50 MHz)
 - 50% Fractional BW
- Relay mode (packet forwarding)
 - Range

—

- 60 nmi over sea water
- On land, range depends upon terrain, ground permittivity & conductivity – typically > 10 miles

UWB Communications Ultra Wideband Tags

Design Characteristics

- UWB tag for detection and identification of problem drivers
- Vehicle-to-roadside communications of driver & vehicle information (image, data)
- 0.2W peak, 400 MHz instantaneous BW
 - Spectrally shaped waveform design
 - L-band center frequency
 - 27% fractional BW
 - 115.2 kb/s packet burst mode
- Range
 - 800' range in high multipath environment
 - 2000'+ (line-of-sight)

UWB Communications Example Tactical range, wireless ad hoc networks

UWB Technology Advances

Recent Trends in Ultra Wideband Communications Systems-10

Regulatory Controversy

Regulatory Issues

- ET 98-153 Ultra-Wideband Transmission Systems
 - Notice of Inquiry (NOI) issued September 1998;
 - Notice for Proposed Rule Making (NPRM) issued May 2000
 - Rule making anticipated 4th Quarter 2001
- UWB proponents desire operation across §15.209 restricted bands
- Spectral filtering
- FACT: Interference from UWB has been demonstrated below 3.1 GHz
 - NTIA, Stanford University, Sprint, Time Domain, University of Texas tests show potential interference to Government radars and GPS
 - Interference effects aggravated by high pulse repetition frequency (PRF) and use of multiple UWB transmitters
- Recommendations
 - NTIA operation below 3.1 GHz is "problematic" except for lower (<20 Mpps) PRF applications
 - ATA et al. (40+ companies) stay above 5.46 GHz safety-of-life band
 - MSSI Stay above 3.1 GHz
 - Part 15 emission levels (500 μ V/m @ 3 meters)
 - 3.1 5.46 GHz limit PRF to 20 Mpps
 - > 5.46 GHz with no PRF limits
 - Enables benefits of UWB technology for all potential applications, including high speed wireless LANs, *without interference to existing services*

Multispectral Solutions, Inc.

Direct Impulse Excitation Why is Spectral Filtering Needed?

Direct impulse excitation of an antenna cannot adequately control radiated bandwidth

Recent Trends in Ultra Wideband Communications Systems-12

Spectrally Filtered UWB Systems

