Self Organizing and Self-Healing Ad-hoc Networks

WLAN 57- by Chip (Brig) Elliott,
BBN Technologies
Cambridge, MA, 02138

Presented at WLAN 2001
by Jerry Burchfiel
Example Problem

- \(N \) radios on a terrain
- Each moving
- No Fixed Infrastructure
- High-Speed Data Communication
- Mobile Voice and Video
- Cheap and Reliable
The Hidden Terminal Problem

- A transmits to B, while C transmits to D
- Results in one or both transmissions failing
- Very common event, alas!
- How could A or C know when to transmit?

A and C can’t hear each other

Their transmissions collide at B and D, and both packets are lost
Channel Access Mechanisms

RTS / CTS Approach

- Receiver directed
- D cues off B’s CTS
- Complex state machines
- Behaves like CSMA
 (Doesn’t work for broadcast)

Timeslot Approach

- Transmitter directed
- Good features of TDMA
- Needs sync’d clocks
- Very hard distributed algorithm

Note that A and C must be coordinated!
Delay vs. Throughput Tradeoff

High Power means low network throughput

Low Power means long end-to-end delay

Single, High-Power Transmission

- 38 other radios blocked

Multi-Hop, Low Power Transmissions

- 14 other radios blocked

Interference Area
“Proactive” Routing Protocols

Link State (SPF)

- **Good Points**
 - Global Knowledge
 - Allows QOS Routing
 - Multicast is “easy”

- **Bad Points**
 - Scales poorly
 - Global bursts of control traffic

Distance Vector

- **Good Points**
 - Less Control Traffic
 - “Local Repair”
 - Simple to Code

- **Bad Points**
 - Control traffic is hard to estimate
 - QOS is hard
 - Multicast is hard
“On-Demand” Routing Protocols

1. Flood Search. (Optimized by caching.)
 - Good Points
 - No global knowledge
 - Allows local repair
 - Scales with Traffic Flows
 - Bad Points
 - Repair routes are suboptimal
 - Bad interactions with TCP
 - Multicast is complicated
 - Denial of Service attacks

2. Path Discovery. (Optimized by pruning.)

3. Traffic. (Source routed.)
A Hierarchical Ad Hoc Network

- Cluster Member
- Cluster Head
- Backbone Link
- RTS / CTS Waveform
- Per-frame Power Control
- Hierarchical Link-State Routing
- Spatial reuse with good end-to-end delay
Ad Hoc Network with Unmanned Aircraft
Example Problem

- High-Speed Data Communication
- Mobile Voice and Video
- Cheap and Reliable

Hidden Terminal Problem

- A transmits to B, while C transmits to D
- Results in one or both transmissions failing
- Very common event, alas!
- How could A or C know when to transmit?

Channel Access Mechanisms

RTS / CTS Approach

- Receiver directed
- D cues off B’s CTS
- Complex state machines
- Behaves like CSMA (Doesn’t work for broadcast)

Timeslot Approach

- Transmitter directed
- Good features of TDMA
- Needs sync’d clocks
- Very hard distributed algorithm

Delay versus Throughput

High Power means low network throughput
Low Power means long end-to-end delay

Single, High-Power Transmission

- 38 other radios blocked

Multi-Hop, Low Power Transmissions

- 14 other radios blocked
- Interference Area
- Note that A and C must be coordinated!
“Proactive” Routing Protocols

Link State (SPF)
- **Good Points**
 - Global Knowledge
 - Allows QOS Routing
 - Multicast is “easy”
- **Bad Points**
 - Scales poorly
 - Global bursts of control traffic

Distance Vector
- **Good Points**
 - Less Control Traffic
 - “Local Repair”
 - Simple to Code
- **Bad Points**
 - Control traffic is hard to estimate
 - QOS is hard
 - Multicast is hard

“On-Demand” Routing Protocols

1. **Flood Search. (Optimized by caching.)**
2. **Path Discovery. (Optimized by pruning.)**
3. **Traffic. (Source routed.)**

Good Points
- No global knowledge
- Allows local repair
- Scales with Traffic Flows
Bad Points
- Repair routes are suboptimal
- Bad interactions with TCP
- Multicast is complicated
- Denial of Service attacks

A Hierarchical Ad Hoc Network

- **Cluster Member**
- **Cluster Head**
- **RTS / CTS Waveform**
- **Per-frame Power Control**
- **Hierarchical Link-State Routing**
- **Spatial reuse with good end-to-end delay**

Ad Hoc Network with Drone Aircraft

- **GBS, LEOs**
- **Drone Nodes**
- **ATM Radios**
- **High Mobility Backbone**
- **Handheld Voice/Data Nodes**