

Quality of Service Aware Routing in Wireless Multihop LANs

Qi Xue and Aura Ganz

Multimedia Networks Laboratory http://dvd1.ecs.umass.edu/wireless/ University of Massachusetts, Amherst

Motivation: Extend WLAN coverage

Increase access range

- Power consumption
- Low channel reuse

Additional APs

- Overlap between Aps/
- Cost efficiency
- Multihop relay
 - Flexibility
 - Extensive coverage

Multihop WLAN architecture

- Better mobility support
- Distributed outgoing traffic load among multiple Aps
- Applications: Airport, hotel and conference hall, etc.

Routing in Multihop WLAN

- Internal traffic:
 - Route: within the multihop WLAN
 - Task: routing in <u>Mobile Ad hoc Network(MANET</u>)
- Outgoing traffic:
 - Route
 - Source→AP: MANET
 - AP→Destination: Wired Internet
 - Task: finding the "best" available AP
 - Outside address recognizable by the AP
 - AP acts as virtual destination

Proposed Solution

- Routing in MANET with QoS constrains
 - Bmin: the minimum bandwidth required by the flow
 - Tmax: the maximum end-to-end delay
- Ad hoc Qos On-demand Routing (AQOR)
 - Phase 1 Traffic estimation
 - Phase 2 Route Discovery
 - Phase 3 Delay Constraint Guarantee
 - Phase 4 Adaptive Routing

Phase 1- Traffic estimation

- Bavail(i) the available bandwidth at node i, that can be used for new flows passing through node i.
- Breq(i, j) the required bandwidth of flow j at node i, i.e., the bandwidth consumed by a new flow j if admitted on a route that includes node i.

Phase 2- Route Discovery

- Route exploration
 - -broadcast route requests
 - -bandwidth control
- Route registration
 - -multiple replies along the reverse route
 - -bandwidth and delay control
- Route activation
 - -Activate on the first data packet
 - Temporary bandwidth reservation

Phase 3 - Delay Constraint

 Estimate end-to-end delay by measuring round trip delays (difficult problem in unsynchronized ad hoc networks)

Transmission delay

Phase 4 - Adaptive Routing

- QoS Violations
 - <u>Channel deterioration</u> in one of the links of the active route.
 - <u>Route break:</u> node on the active route leaves the route
- Route Recovery
 - -QoS violation detection
 - -Reverse exploration
 - -Route switching

Basic Comparison with Existing MANET Routing Protocols

	AQOR	AODV	DSR
On demand	Yes	Yes	Yes
Neighborhood	Yes	Yes	Νο
QoS support	Yes	No	Νο
Recovery	Registered nodes	Entire network	Entire network
Routing path	Adaptive	Fixed	Fixed

Simulation using OPNET

Accessible range: 300 meters, Data rate: 11Mbps

Conclusion

- Provision of extended coverage at low cost
- Accommodate more customers due to load balancing achieved by AQOR
- Seamless integration of an ad hoc wireless \bullet LAN within a wired infrastructure
- Robust communication is achieved by integrating QoS in the routing protocol
- Accommodate Service Layer Agreements (SLA) in wireless LANs
- QoS can be provided if 802.11e NIC card is used