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IEEE 802.11B DCF
� DSSS multirate operation 

in the 2.4 GHz ISM band
� 1 and 2 Mbps PSK over 

11-chip Barker sequence 
� 5.5 and 11 Mbps CCK
� Preamble and Header 

transmitted mandatory at 
Basic rate

� Asynchronous services via 
Distributed Coordination 
Function (DCF)

� RTS/CTS “handshake” access 
scheme

� Considerable influence of 
RTS/CTS “handshake” over 
capture (as shown forthwith )
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DCF Saturation Capacity
� Saturation throughput Smax of IEEE 802.11 DCF in ideal channel 

conditions (according to Bianchi’s paper) can be expressed as:

� P average packet payload
� σ duration of an empty slot time during contention
� Ts average time channel is sensed busy because of a successful 

transmission (fixed value depending on weather Basic or RTS/CTS 
access is used)

� Tc average time channel is sensed busy by each station during 
collision (fixed value depending on weather Basic or RTS/CTS 
access is used)

� Ptr is the probability of at least one transmission in the observed time 
slot

� Psuc is the probability of a successful transmission assuming at least 
one station is transmitting
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DCF Saturation Capacity (cont’d)

� Psuc and Ptr can be expressed through probability τ of a 
station transmitting in a randomly chosen slot time:
� Ptr = 1 – (1 – τ)N

� Psuc = Nτ(1 – τ)N-1/Ptr

� Probability τ depends on:
� Number of contending stations N
� Initial contention window
� Number of retries before a frame discard



Capture Effect in IEEE 802.11 PHY
� A receiver captures a frame if frame’s detected power Ps

sufficiently exceeds the joint interfering power Pn of n
interfering contenders
� Ps / Pn > z0⋅g(Sf)
� for a duration a certain fragment tw of the time slot t (0 < tw < t)

� z0 is capture ratio 
� g(Sf) is S/I reduction factor due to processing gain in DSSS 

correlation receiver; Sf is the spreading factor
� We assume a receiver inspects posible capture during tw of 

the preamble/header part of the frame, which is always 
transmitted at 1 Mbps using BPSK modulation of the Barker 
symbols

� Given rectangular-shaped chips, g(Sf) = 2/(3⋅Sf), where Sf = 11 due 
to 11-chip Barker code



Capture Probability
� Conditional capture probability given i interfering frames,

Prob(γ > z0⋅g(Sf)| i), is the probability of S/I (γ = Ps/Pn) exceeding 
value of z0⋅g(Sf)

� Probability of frame capture Pcapure

� Ri is probability of i interfering frames being generated in an observed 
time slot:
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Capture Model 1 (CM1)

� Rayleigh-distributed envelopes of both useful and interfering 
frames 
� mean power p0d of the useful signal at the receiver
� mean power p0i of n interfering frames at the receiver

� Conditional capture probability

� Attained closed-form solution of capture probability Pcapture
and saturation throughput Smax of the IEEE 802.11 DCF
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Basic Access with CM1

� Theoretical max. capacity Smax as function of mean power 
ratio p0d/p0i given 10 stations

� Capture ratio z0 appear as parameter
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� Rayleigh-distributed envelopes of both useful and interfering frames
� Two distinct levels of frame’s mean power at the receiver:

� mean power A of i interfering frames (also the useful one)
� mean power B of j interfering frames
� conditional capture probability

� Given N0 of interferers with power levels A and B are binomial 
distributed, with probabilities p and 1-p, respectively:

� Attained closed-form solution of capture probability Pcapture
and saturation throughput of Smax of the IEEE 802.11 DCF
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Basic Access with CM2

� Theoretical max. capacity Smax as function of probability p, given 
10 stations

� Mean power ratio A/B appear as parameter
� Equal local mean power of all contending frames at receiver, i.e. 

A/B = 1
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CM1 and CM2

� If Basic access scheme is employed: 
� Capture effect generates significant throughput increase

� If RTS/CTS “handshake” access scheme is employed:
� Minor throughput increase of a few percent for both models

Two power level models are more suitable to  study 
capture effects as compared to the single power level 
model of a Rayleigh-faded channel



IEEE 802.11 System Setup
� 10 stations within a single ad-hoc 

Basic Service Area
� Rician-faded envelope of all 

signals
� Rician factor K in range between 

3 and 12.5 (i.e. 6.8 dB and 11 dB)
� Neglected propagation delay
� Results referring to signaling rate 

of 1 Mbps, g(Sf) = 2/(3⋅Sf), and
Sf = 11

� For rates of 2, 5.5, and 11 Mbps, 
corresponding system parameters 
must be used according to IEEE 
802.11B specification

� System model parameters for 
both analysis and simulation

50 mWTransmit power

5Retry_Limit

200 octetsRTS_Threshold

20 µsSlot_Time σ

50 µsDIFS

20 µsSIFS

14 octetsCTS

20 octetsRTS

14 octetsACK

34 octetsMAC header

48 symbolsPHY Header

144 symbolsPHY Preamble

1 Mbit/sChannel Rate

Default valueParameter



Analysis vs. Simulation:Measures of Comparison

� Probability of frame capture Pcapure(N ≥ 1), assuming at 
least one interferer (N ≥ 1)

� Channel utilization Smax

� Comparison of probability of frame capture Pcapure(N ≥ 1) 
and channel utilization Smax obtained analytically and via 
simulation
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Simulated Rician-faded channel and CM1
� Pcapure(N ≥ 1) vs. z0 � Smax vs. z0

� Simulations match analytical results most closely given 
1 ≤ P0d/P0i ≤ 10
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Simulated Rician-faded channel and CM2
� Pcapure(N ≥ 1) vs. z0 � Smax vs. z0

� Simulations match analytical results most closely given 
A/B ≥ 10 and p = ½ (equal occurrence probability of both 
power levels)
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Conclusions
� 2 capture models of indoor Rayleigh-fading channel with different 

power scenarios to explore the influence of capture effect over IEEE 
802.11 DCF

� Simulations of IEEE 802.11 DCF in a pure Rician-fading channel 
prove the analytical results of saturation throughput and capture 
probability of the two capture models

� CM 1 at Basic Access: closest correspondence between analytical and 
simulation results is established given mean-power ratio of the useful 
and each of interfering signals is in the range of 0 and 10 dB

� CM 2 at Basic Access: closest correspondence between analytical and 
simulation results is established given mean-power ratio of equally 
distributed numbers of interferers is higher then 10 dB

� Capture effect produces only minor throughput increase of a few 
percent given RTS/CTS “handshake” access mechanism

� Impact of capture and selection of the proper capture model depends 
primarily on the receiver design of an IEEE 802.11 system
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