

Sts. Cyril and Methodius University Skopje Faculty of Electrical Engineering

IEEE 802.11 DCF with Capture over Rician-Fading Channel

Zoran Hadzi-Velkov, and Boris Spasenovski

The Third IEEE Workshop on WLANs 27-28 September 2001 Boston Marriott Newton

Outline

- IEEE 802.11B Distributed Coordination Function
 DCF Channel Utilization
 Capture Effect
 Capture Models of Indoor Rayleigh-fading Channel with Two Distinct Power Levels (CM1 and CM2)
 Models Verification by Simulation in Pure Rician-fading Channel
- **Conclusions**

IEEE 802.11B DCF

- DSSS multirate operation in the 2.4 GHz ISM band
 1 and 2 Mbps PSK over 11-chip Barker sequence
 5.5 and 11 Mbps CCK
 Preamble and Header transmitted mandatory at Basic rate
- Asynchronous services via Distributed Coordination Function (DCF)
 RTS/CTS "handshake" access
 - scheme

 Considerable influence of RTS/CTS "handshake" over capture (as shown forthwith)

DCF Saturation Capacity

□ Saturation throughput S_{max} of IEEE 802.11 DCF in ideal channel conditions (according to Bianchi's paper) can be expressed as:

$$= \frac{1}{T_s - T_c + \frac{\sigma(1 - P_{tr}) / P_{tr} + T_c}{P_{suc}}}$$

• *P* average packet payload

 $S_{\rm max}$

- σ duration of an empty slot time during contention
- *T_s* average time channel is sensed busy because of a successful transmission (fixed value depending on weather Basic or RTS/CTS access is used)
 - T_c average time channel is sensed busy by each station during collision (fixed value depending on weather Basic or RTS/CTS access is used)
- P_{tr} is the probability of at least one transmission in the observed time slot
- P_{suc} is the probability of a successful transmission assuming at least one station is transmitting

DCF Saturation Capacity (cont'd)

- $\square P_{suc} \text{ and } P_{tr} \text{ can be expressed through probability } \tau \text{ of a station transmitting in a randomly chosen slot time:}$
 - $P_{tr} = 1 (1 \tau)^N$
 - $P_{\rm suc} = N \tau (1 \tau)^{N-1} / P_{\rm tr}$
- **\square** Probability τ depends on:
 - Number of contending stations N
 - Initial contention window
 - Number of retries before a frame discard

Capture Effect in IEEE 802.11 PHY

- □ A receiver captures a frame if frame's detected power P_s sufficiently exceeds the joint interfering power P_n of ninterfering contenders
 - $P_s / P_n > z_0 \cdot g(S_f)$
 - for a duration a certain fragment t_w of the time slot $t (0 < t_w < t)$
- \Box z_0 is capture ratio
- □ $g(S_f)$ is S/I reduction factor due to processing gain in DSSS correlation receiver; S_f is the spreading factor
- We assume a receiver inspects possible capture during t_w of the preamble/header part of the frame, which is always transmitted at 1 Mbps using BPSK modulation of the Barker symbols
- □ Given rectangular-shaped chips, $g(S_f) = 2/(3 \cdot S_f)$, where $S_f = 11$ due to 11-chip Barker code

Capture Probability

- Conditional capture probability given *i* interfering frames, $Prob(\gamma > z_0 \cdot g(S_f) / i)$, is the probability of S/I ($\gamma = P_s / P_n$) exceeding value of $z_0 \cdot g(S_f)$
- Probability of frame capture P_{capure}

R

$$P_{capture} = \sum_{i=1}^{n} R_i \cdot \Pr{ob(\gamma > z_o \cdot g(S_f) | i)}$$

 R_{i} is probability of *i* interfering frames being generated in an observed time slot:

$$R_{i} = \left(\frac{N}{i+1}\right)\tau^{i+1}(1-\tau)^{N-i-1} = \frac{N\tau(1-\tau)^{N-1} + P_{capture}}{P_{suc}} = \frac{N\tau(1-\tau)^{N-1} + \sum_{i=1}^{N-1} R_{i} \cdot \Pr ob(\gamma > z_{o} \cdot g(S_{f}) | i)}{1-(1-\tau)^{N}}$$

Capture Model 1 (CM1)

- Rayleigh-distributed envelopes of both useful and interfering frames
 - mean power p_{0d} of the useful signal at the receiver
 - mean power p_{0i} of *n* interfering frames at the receiver
- Conditional capture probability

 $\Pr{ob(\gamma > z_o \cdot g(S_f) \mid n)} = 1/[1 + g(S_f) \cdot z_o \cdot p_{0i} / p_{0d}]^n$

□ Attained closed-form solution of capture probability P_{capture} and saturation throughput S_{max} of the IEEE 802.11 DCF

Basic Access with CM1

- □ Theoretical max. capacity S_{max} as function of mean power ratio p_{0d}/p_{0i} given 10 stations
- **\Box** Capture ratio z_0 appear as parameter

Capture Model 2 (CM2)

- Rayleigh-distributed envelopes of both useful and interfering frames
- Two distinct levels of frame's mean power at the receiver:
 - mean power A of *i* interfering frames (also the useful one)
 - mean power B of j interfering frames
 - conditional capture probability
- $\operatorname{Prob}(\gamma > z_0 \cdot g(S_f) \mid n) = \frac{1}{\left[1 + z_0 \cdot g(S_f)\right]^i \cdot \left[1 + (B/A)z_0 \cdot g(S_f)\right]^j}$ Given N_0 of interferers with power levels A and B are binomial

distributed, with probabilities *p* and 1-*p*, respectively:

$$\overline{\Pr ob(\gamma > z_o \cdot g(S_f) \mid n)} = p \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \frac{1}{[1+z_o \cdot g(S_f)]^i} \frac{1}{(1+z_o \cdot g(S_f) \mid B/A)^{n-i}} + (1-p) \sum_{i=0}^n \binom{n}{i} p^i (1-p)^{n-i} \frac{1}{[1+z_o \cdot g(S_f) \mid A/B]^i} \frac{1}{[1+z_o \cdot g(S_f)]^{n-i}}$$

$$= p \left(\frac{p}{1 + g(S_f) \cdot z_o} + \frac{1 - p}{1 + g(S_f) \cdot z_o B/A} \right) + (1 - p) \left(\frac{p}{1 + A/B z_o \cdot g(S_f)} + \frac{1 - p}{1 + g(S_f) \cdot z_o} \right)$$

Attained closed-form solution of capture probability $P_{capture}$ and saturation throughput of S_{max} of the IEEE 802.11 DCF

Basic Access with CM2

- □ Theoretical max. capacity S_{max} as function of probability *p*, given 10 stations
- □ Mean power ratio A/B appear as parameter
- Equal local mean power of all contending frames at receiver, i.e. A/B = 1

CM1 and CM2

- □ If Basic access scheme is employed:
 - Capture effect generates significant throughput increase
- □ If RTS/CTS "handshake" access scheme is employed:
 - Minor throughput increase of a few percent for both models
- Two power level models are more suitable to study capture effects as compared to the single power level model of a Rayleigh-faded channel

IEEE 802.11 System Setup

\Box 10 stations within a	a single	ad-ho	C E]
Pasia Sarviaa Arac				
Dasic Service Area	l			

- Rician-faded envelope of all signals
- □ Rician factor K in range between 3 and 12.5 (i.e. 6.8 dB and 11 dB)
- Neglected propagation delay

 $S_{\rm f} = 11$

- □ Results referring to signaling rate of 1 Mbps, $g(S_f) = 2/(3 \cdot S_f)$, and
- For rates of 2, 5.5, and 11 Mbps,
 corresponding system parameters must be used according to IEEE 802.11B specification

System model parameters for both analysis and simulation

Parameter	Default value
Channel Rate	1 Mbit/s
PHY Preamble	144 symbols
PHY Header	48 symbols
MAC header	34 octets
ACK	14 octets
RTS	20 octets
CTS	14 octets
SIFS	20 µs
DIFS	50 µs
Slot_Time σ	20 µs
RTS_Threshold	200 octets
Retry_Limit	5
Transmit power	50 mW

Analysis vs. Simulation: Measures of Comparison

- □ Probability of frame capture $P_{capure}(N \ge 1)$, assuming at least one interferer ($N \ge 1$)
 - $P_{capture}(N \ge 1) = \frac{\sum_{i=1}^{N-1} R_i \cdot \Pr{ob(\gamma > z_o \cdot g(S_f) | i)}}{1 (1 \tau)^N N\tau(1 \tau)^{N-1}}$
- \Box Channel utilization S_{max}
- □ Comparison of probability of frame capture $P_{capure}(N \ge 1)$ and channel utilization S_{max} obtained analytically and via simulation

Simulated Rician-faded channel and CM1

□ Simulations match analytical results most closely given $1 \le P_{0d}/P_{0i} \le 10$

Simulated Rician-faded channel and CM2

□ Simulations match analytical results most closely given $A/B \ge 10$ and $p = \frac{1}{2}$ (equal occurrence probability of both power levels)

Conclusions

- 2 capture models of indoor Rayleigh-fading channel with different power scenarios to explore the influence of capture effect over IEEE 802.11 DCF
- Simulations of IEEE 802.11 DCF in a pure Rician-fading channel prove the analytical results of saturation throughput and capture probability of the two capture models
- CM 1 at Basic Access: closest correspondence between analytical and simulation results is established given mean-power ratio of the useful and each of interfering signals is in the range of 0 and 10 dB
- CM 2 at Basic Access: closest correspondence between analytical and simulation results is established given mean-power ratio of equally distributed numbers of interferers is higher then 10 dB
 - Capture effect produces only minor throughput increase of a few percent given RTS/CTS "handshake" access mechanism
- □ Impact of capture and selection of the proper capture model depends primarily on the receiver design of an IEEE 802.11 system

References

□ IEEE Standard for Wireless LAN Medium Control and Physical Laver Access Specifications, IEEE 802.11b, Nov. 1999 □ J. Bianchi, "Performance Analysis of IEEE 802.11 Distributed Coordination Function", IEEE J. Select. Areas Commun., vol. 18. No. 3, March 2000, pp. 535–547 □ Z. Hadzi-Velkov and B. Spasenovski, "Capture Effect in IEEE 802.11 Wireless LANs", to appear in Proc. IEEE ICWLHN 2001, Singapore, December 5-7, 2001 □ J. Perez-Romero, L.G. Alonso, and R. Agusti, "Average Block Error Probability in reverse Link of a Packet DS/CDMA System under Rayleigh Fading Channel Conditions", IEEE Comm. Letters, vol. 4, No. 4, April 2000, pp. 116-118

 C. Arnbak and W. van Blitterswijk, "Capacity of Slotted Aloha in Rayleighfading channels", *IEEE J. Select. Areas Commun.*, vol. SAC-5, Feb. 1987, pp. 261-269

- C.T.Lau and C.Leung, "Capture Models for Mobile Packet Radio Networks", *IEEE Trans. on Commun.*, vol. COM-40, May 1992, pp. 917-925
- D. Dardari, V. Tralli and R. Verdone, "On the Capacity of Slotted Aloha with Rayleigh Fading: The Role Played by the Number of Interferes", *IEEE Comm. Letters*, vol. 4, No. 5, May 2000, pp. 155-157
- L.C. Wand and C.T. Lea, "Co-Channel Interference Analysis of Shadowed Rician Channels", *IEEE Comm.Letters*, vol. 2, No. 3, March 1998, pp. 67 – 69