
The Third IEEE Workshop on Wireless Local Area Networks
September 27-28, 2001

A Probabilistic Approach to
WLAN User Location Estimation

Pauli Misikangas
Juha Sievänen

http://www.ekahau.com

Petri Myllymäki
Teemu Roos
Henry Tirri

Department of Computer Science
University of Helsinki

http://www.cs.Helsinki.FI/research/cosco
cosco@cs.Helsinki.FI

Complex Systems
Computation Group
CoSCo

Complex Systems
Computation Group
CoSCo



Myllymäki et al. 3rd IEEE Workshop on WLANs, September 28, 2001 2

Location Estimation & Machine Learning

Machine Learning (ML): Infer a model from a set of training data
in order to obtain predictions 
concerning an unforeseen set of test data.
Location Estimation as a ML Problem

training data: RXLev from various known locations
test data: RXLev from an unknown location
model: an estimator of the unknown location given RXLev
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Location Estimation & Machine Learning 
(contd.)

• Let L denote the location variable, and let
O denote the RXLev observation variable.

• Training data consists of N pairs denoted by (Li, Oi) , 
for i ∈ {1, ..., N}.

• Location variable L can be either
• discrete/nominal: “room B226”, “lobby”, ...
• continuous: (x,y) or (x,y,z) in pixels, meters, ...

• A natural loss-function: distance from true location
• Accuracy is enhanced by tracking: The user is 

probably near the place where she was two seconds 
ago.
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The Nearest Neighbor Method

• The Nearest Neighbor (NN) Method chooses the location 
for which the Euclidean distance between the current and 
stored RXLev observation vectors is minimized

• An implementational problem: What is the distance 
between -50 dBmW and “not available”? 

• k-Nearest Neighbor Method: Choose the k nearest 
observations and takes the average of the corresponding 
locations.

• Used for WLAN location estimation by Bahl et al. (2000):
90% of errors less than 6 meters.

L = Li, where i = argmin || O – Oi ||
^
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A Probabilistic Approach

• A probabilistic model

assigns a probability for each possible location L
given the RXLev observations O.

• P(O | L) is the conditional probability of obtaining 
observations O at location L.

• P(L) is the prior probability of location O. (Could be 
used to exploit user profiles etc.)

• P(O) is just a normalizing constant.
• How to obtain P(O | L) from training data?

P(O | L) P(L)P(L | O) =
P(O)
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Probabilistic Approach I:
The Kernel Method

• In the Kernel Method a probability mass is assigned 
to a “kernel” centered at the observation Oi:

where K is the kernel function.

• Gaussian kernel:

where C is a normalizing constant, and σ is an 
adjustable variance (bandwidth) parameter.

• The Nearest Neighbor Method is obtained as a 
limiting case when σ goes to zero.

(          )
O

P(O | Li) = K(O, Oi),
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Probabilistic Approach II:
The Histogram Method

• In the Histogram Method the RXLev values are
discretized into k bins:

• The location variable should also be discretized. 
(Otherwise there is only one observation per 
location.)

• How to choose k ? How to choose the bin intervals? 
(Equal width is not always good.)

P(O | L)

O

k = 5
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Case-study

• Eight base-stations in five physically separate sites.
• Office building, 16 x 40 meters, concrete/wood/glass 

structures.
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Testing

• Test data must be independent of the training data.
• If both training and test data are collected at the same 

time, accuracy estimates can be too optimistic, even if one 
uses sophisticated empirical methods like cross-validation.

Training

Test   
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Accuracy vs. Amount of Data

• Best result: mean error 2.57 meters (90% below 4.52 meters) 
obtained with the probabilistic histogram method with tracking.

• Surprisingly robust with respect to the amount of training data.
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Accuracy vs. Number of Base Stations

• Number of base stations is a significant factor.
• Does not affect the ranking of the methods.

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8
Number of base stations

M
ea

n 
er

ro
r 

in
 m

et
er

s

NN
NN+tracking
Kernels
Kernels+tracking
Histograms
Histograms+tracking



Myllymäki et al. 3rd IEEE Workshop on WLANs, September 28, 2001 12

Conclusions

• To build an accurate location system, one needs either to 
collect training data or to have access to detailed 
information on the topology of the building.

• Collecting the training data is surprisingly easy, a 
reasonable level of accuracy can be obtained quickly. 

• No standardized setup for measuring the accuracy —
“cheating” is easy.

• No dramatic differences in accuracy between different 
location estimation methods.

• Probabilistic methods seem to perform slightly better due 
to the “noisyness” of the domain.

• Ongoing work: fully automated parameter tuning for 
increased robustness.
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