The Third IEEE Workshop on Wireless Local Area Networks September 27-28, 2001

A Probabilistic Approach to WLAN User Location Estimation

Petri Myllymäki Teemu Roos Henry Tirri

Pauli Misikangas Juha Sievänen

Department of Computer Science University of Helsinki

http://www.cs.Helsinki.Fl/research/cosco cosco@cs.Helsinki.Fl

http://www.ekahau.com

Location Estimation & Machine Learning

- Machine Learning (ML): Infer a model from a set of training data in order to obtain predictions concerning an unforeseen set of test data.
- Location Estimation as a ML Problem
 - training data: RXLev from various known locations
 - test data: RXLev from an unknown location
 - model: an estimator of the unknown location given RXLev

Location Estimation & Machine Learning (contd.)

- Let L denote the location variable, and let
 O denote the RXLev observation variable.
- Training data consists of N pairs denoted by $(L_i, \, O_i)$, for $\, i \, \in \, \{1, \, ..., \, N\}.$
- Location variable L can be either
 - discrete/nominal: "room B226", "lobby", ...
 - continuous: (x,y) or (x,y,z) in pixels, meters, ...
- A natural loss-function: distance from true location
- Accuracy is enhanced by *tracking*: The user is probably near the place where she was two seconds ago.

The Nearest Neighbor Method

 The Nearest Neighbor (NN) Method chooses the location for which the Euclidean distance between the current and stored RXLev observation vectors is minimized

 $\hat{L} = L_i$, where i = argmin $|| O - O_i ||$

- An implementational problem: What is the distance between -50 dBmW and "not available"?
- k-Nearest Neighbor Method: Choose the k nearest observations and takes the average of the corresponding locations.
- Used for WLAN location estimation by Bahl et al. (2000): 90% of errors less than 6 meters.

A Probabilistic Approach

• A probabilistic model

$$P(L \mid O) = \frac{P(O \mid L) P(L)}{P(O)}$$

assigns a probability for each possible location L given the RXLev observations O.

- P(O | L) is the conditional probability of obtaining observations O at location L.
- P(L) is the prior probability of location O. (Could be used to exploit user profiles etc.)
- P(O) is just a normalizing constant.
- How to obtain P(O | L) from training data?

Probabilistic Approach I: The Kernel Method

 In the Kernel Method a probability mass is assigned to a "kernel" centered at the observation O_i:

 $P(O | L_i) = K(O, O_i)$, where K is the kernel function.

• Gaussian kernel: $\left(\frac{-|| \circ - \circ_i ||^2}{\sigma^2}\right) \xrightarrow{K(x, \circ_i)} \xrightarrow{\sigma_i} \xrightarrow{K(x, \circ_i)} \xrightarrow{\sigma_i} \xrightarrow{K(x, \circ_i)} \xrightarrow{\sigma_i} \xrightarrow{\sigma_i} \xrightarrow{K(x, \circ_i)} \xrightarrow{\sigma_i} \xrightarrow{\sigma_i} \xrightarrow{K(x, \circ_i)} \xrightarrow{\sigma_i} \xrightarrow{\sigma_i} \xrightarrow{K(x, \circ_i)} \xrightarrow{K(x, \circ_i)} \xrightarrow{\sigma_i} \xrightarrow{K(x, \circ_i)} \xrightarrow{$

where C is a normalizing constant, and σ is an adjustable variance (*bandwidth*) parameter.

 The Nearest Neighbor Method is obtained as a limiting case when σ goes to zero.

Myllymäki et al. 3rd IEEE Workshop on WLANs, September 28, 2001

Probabilistic Approach II: The Histogram Method

 In the Histogram Method the RXLev values are discretized into k bins:

- The location variable should also be discretized. (Otherwise there is only one observation per location.)
- How to choose k? How to choose the bin intervals? (Equal width is not always good.)

Case-study

- Eight base-stations in five physically separate sites.
- Office building, 16 x 40 meters, concrete/wood/glass structures.

Testing

- Test data must be independent of the training data.
- If both training and test data are collected at the same time, accuracy estimates can be too optimistic, even if one uses sophisticated empirical methods like cross-validation.

Myllymäki et al.

3rd IEEE Workshop on WLANs, September 28, 2001

Accuracy vs. Amount of Data

- Best result: mean error 2.57 meters (90% below 4.52 meters) obtained with the probabilistic histogram method with tracking.
- Surprisingly robust with respect to the amount of training data.

Myllymäki et al. 3rd IEEE Workshop on WLANs, September 28, 2001

Accuracy vs. Number of Base Stations

- Number of base stations is a significant factor.
- Does not affect the ranking of the methods.

Conclusions

- To build an accurate location system, one needs either to collect training data or to have access to detailed information on the topology of the building.
- Collecting the training data is surprisingly easy, a reasonable level of accuracy can be obtained quickly.
- No standardized setup for measuring the accuracy "cheating" is easy.
- No dramatic differences in accuracy between different location estimation methods.
- Probabilistic methods seem to perform slightly better due to the "noisyness" of the domain.
- Ongoing work: fully automated parameter tuning for increased robustness.