Architecture and Predicted Performance of an IEEE 802.11b-like Wireless Metropolitan Area Network Transceiver at 5.8 GHz

Center for Information and Communication Technology Research

Alexander Lackpour Mohsen Kavehrad Scott Thompson* **Anntron Inc.*

Outline

- Anntron Inc.'s WMAN System Architecture
 - Network Topology
 - Components:
 - UNII-Link Transceiver, Multibeam Antenna Assembly, Intelligent Hub Access System
 - Predicted Performance Analysis
 - Benefit of Adaptive Rate-Switching
- Narrowband Channel Sounding at 5.8 GHz
 - RSS Data Reduction Methodology
 - RSS Data Histogram and CDF
 - Minimum Fade Margin Analysis
 - Minimum Chi-Square (X²) Analysis
 - Level Crossing Rate and Average Fade Duration

WMAN Architecture

Anntron's WMAN Components

Wireless Metropolitan Area Network (WMAN)

UNII-Link - point-to-point wireless LAN bridge

- Based on IEEE 802.11b WLAN standard
- Intersil's PRISM II chipset
- Custom Medium Access Controller (MAC) optimized for outdoor, point-to-point LAN bridging

MAA - Multibeam Antenna Assembly

6 main lobes over 90 degrees

Angular and antenna polarization diversity

IHAS - Intelligent Hub Access System

- Contention-free medium access through switched Ethernet LAN microsegmentation
- Pause packets provide full-duplex flow control

UNII-Link WMAN Transceiver

Modem: Intersil's Prism II Chipset

Baseband Processor (HFA3863)

- DSSS Modulation: 1, 2, 5.5, and 11 Mbps rates
- Rake Receiver and Decision Feedback Equalizer
- I/Q Mod/Demodulator (HFA3783)

Baseband to IF conversion with 70 dB of AGC

- MAC optimized for outdoor, point-to-point LANs
 - Rate-Switching algorithm reduces probability

of packet errors (adaptive modulation)

Removed inherent latency of IEEE 802.11b's Distributed Coordination Functions (DCF)

Prevent buffer overflow through MAC layer flow control

Convert PRISM II BER vs. E_b/N_o curves to BER vs. SNR

BER vs. Rx Power (dBm) Performance Curves Benefit of Adaptive Rate-Switching

- BER vs. Rx power curves apply adaptive rate-switching
- Define minimum performance, select modulation level that can provide BER
- Required Rx power to maintain BER of 10⁻⁶ drops 15 dB going from 11 to 1 Mbps

IHAS Architecture

IHAS - Intelligent Hub Access System

Switched Ethernet Hub – LAN Microsegmentation

Pause packets quench Ethernet source when transmit buffers reach capacity

Multi-beam Antenna Assembly

Provides angular and antenna polarization diversity
Segments coverage area into point-to-point subsectors

Narrowband Channel Sounding at 5.8 GHz

Narrowband channel sounding for Near-Line-of-Sight (NLOS) Link: Measure Received Signal Strength (RSS) of a transmitted CW signal

RSS Data Reduction Methodology (1/2)

Capture Fading Intervals:

- RSS sampling rate = 2000 S/sec
- Segment long-term measurement into 2-second intervals
- Calculate running-average of previous 2000 interval averages
- Record interval RSS samples if 15 samples are 5 dB below running-average of interval averages

RSS Data Reduction Methodology (2/2)

Data analysis procedure:

- Normalize RSS samples to fading interval average
- Calculate histogram, CDF, level crossing rate, and average fade duration

Find lowest received power:

- Minimum of temporal variations relative to interval mean: -8 dBm
- Temporal minimum occurred during 2nd lowest RSS interval mean: -64 dBm
 - Lowest received power:
 - –72 dBm

Calculating Minimum Fade Margin

Consider the lowest received signal power: -72 dBm

- Take measurement during worst-case channel conditions
- Use maximum accepted BER to establish the fade margin

Experimental RSS Data Histogram and CDF

Histogram of RSS

 Outlier intervals due to mobile scattering (moving foliage in path)

CDF of RSS

- Probability of a 6 dB fade
 - Outlier interval: 10%
 - Mean: 0.7%

PENNSTATE CICTR Minimum Chi-Square (X²) Analysis -Fitting Rayleigh and Rician PDFs to Experimental PMF (1/2)

Minimum Chi-Squared (X²) Analysis

$$X^{2} = \sum_{i} \frac{N(\hat{p}(X_{i}) - p(X_{i}))^{2}}{p(X_{i})}$$

Rayleigh Channel Fading Model – expressed in dB

$$p(y) = \frac{1}{M\sigma^2} \exp\left[\frac{2y}{M} - \frac{1}{2\sigma^2} \exp\left(\frac{2y}{M}\right)\right] \qquad M = \frac{20}{\ln 10}$$

Rician Channel Fading Model – expressed in dB

$$p(y) = \frac{1}{M\sigma^2} \exp\left\{\frac{2y}{M} - \frac{1}{2\sigma^2} \left[r_s^2 + \exp\left(\frac{2y}{M}\right)\right]\right\} \cdot I_0 \left[\frac{r_s}{\sigma^2} \exp\left(\frac{y}{M}\right)\right]$$

Vary LOS component of K-Factor: $r_s = 2\sigma^2 10^{\frac{R}{10}}$

CICTR Minimum Chi-Square (X²) Analysis -Fitting Rayleigh and Rician PDFs to Experimental PMF (2/2)

PENNSTATE

PDF Type	σ²	K-Factor (dB)	X ² Goodness-of- fit test result
Rayleigh	0.51	-	7.1%
Rician	0.027	12.6	99.99%

Level Crossing Rate (LCR)

LCR of RSS

 LCR is mostly symmetrical around 0 dBm

(Fading Interval mean)

- LCR at –6 dBmn
 - **90th Percentile:** $70 \frac{\text{crossings}}{\text{second}}$

Average Fade Duration (AFD)

Conclusion

WMAN architecture benefits from an optimized bridge

- Stripped down MAC remove IEEE 802.11b's inherent latency
- Data Link Layer flow control through Pause packets
- Adaptive rate-switching algorithm mitigates poor channel conditions due to RSS fading
- Eliminate co-channel interference through frequency, angular, and antenna polarization diversity
- Narrowband channel sounding of NLOS link at 5.8 GHz
 - RSS measurement test hardware & software is reusable
 - Rician Channel model fit the experimental RSS data (99.99%) with K-Factor = 12.6 dB and variance = 0.027
 - A posteriori required fade margin: < 1 dB