selective etchant. The later growth stages have been reported previously.3,6
The wafer was then cleaved into 500 µm long devices, which were bonded p-side down, using AuSn solder, on to diamond heatsinks mounted on copper submounts.

Device characteristics: The dependence of the optical output power on increasing CW drive current of a typical 500 µm long device is shown in Fig. 2. The CW output power per facet is in excess of 20 mW at 25°C with a threshold current of 26 mA. The temperature dependence, Tth, of the pulsed threshold current was measured to be 45 K, over the temperature range 15 to 60°C. Devices had a lasing wavelength of 1.55 µm, and a spectral width of under 5 nm (FWHM). Devices with improved characteristics have been fabricated, and these will be reported when sufficient lifetest data has been accumulated.

Fig. 2 Optical output power from one facet against CW bias current
Uncoated 500 µm long GRINSCH MQW laser device

Reliability performance: It has been shown that BH lasers can exhibit two distinct stages of degradation.3,8 There is a relatively rapid first stage which saturates, followed by a much lower rate of long-term wearout.

The GRINSCH laser devices which are the subject of this letter were subjected to a burn-in of 100 mA drive current at 125°C for 24h, to complete the changes associated with the first stage of degradation. A batch of ten GRINSCH lasers have been on lifetest for 3500 h at a constant output power of 4 mW per facet at 50°C. From an initial current, Ith, the increase bias current, I, necessary to maintain this output over time was monitored. Fig. 3 shows the normalised bias current, I/Ith, against the lifetest duration in hours. The average rate of increase of drive current is 1%/h. These initial results for GRINSCH MQ lasers are very encouraging. We considered

Conclusions: We have fabricated the first reliable GRINSCH MQW lasers grown entirely by MOVPE, with projected rates of degradation which are promising for such a relatively complex structure.

Acknowledgments: The Principal General Manager, Materials and Component Research, Research and Technology, British Telecom, is thanked for permission to publish this letter, and M. Aylett, M. Harlow and H. J. Wickes are also acknowledged for their contributions to the work.

R. M. REDSTALL
24th April 1990

British Telecom Research Laboratories
Martlesham Heath
Ipswich IP5 7RE, United Kingdom

References
2 TAKANO, S., SAKI, T., YAMADA, H., KITAMURA, M., MITO, I., and MUZUKI, T.: 'Improvements in resonance frequency and Tth value by 1.5-µm InGaAs MQW lasers grown by MOVPE', J. Cryst. Growth, 1988, 93, pp. 857-862

The Principal General Manager, Materials and Component Research, Research and Technology, British Telecom, is thanked for permission to publish this letter, and M. Aylett, M. Harlow and H. J. Wickes are also acknowledged for their contributions to the work.

R. M. REDSTALL
24th April 1990

British Telecom Research Laboratories
Martlesham Heath
Ipswich IP5 7RE, United Kingdom

References
2 TAKANO, S., SAKI, T., YAMADA, H., KITAMURA, M., MITO, I., and MUZUKI, T.: 'Improvements in resonance frequency and Tth value by 1.5-µm InGaAs MQW lasers grown by MOVPE', J. Cryst. Growth, 1988, 93, pp. 857-862

STATISTICAL AR MODELS FOR THE FREQUENCY SELECTIVE INDOOR RADIO CHANNEL

Indexing terms: Radiowave propagation, Modelling

A statistical model of the indoor radio channel is proposed that is derived from a second order autoregressive process representation of the channel frequency response. The accuracy of the statistical model is examined by comparing the cumulative distribution functions of the RMS delay spread and the 3 dB width of the frequency correlation function computed from the regenerated data with that of the measurements performed in two indoor radio propagation studies in the 0.9-1.1 GHz band.

Introduction: In previous letters by the authors, frequency domain measurements of the indoor radio channel were described and it was shown that they can be modelled as a second order autoregressive (AR) process. The location of the poles of the model in the z-plane was further related to the arrival of two clusters of paths. In this letter, based on the statistical variations of the poles obtained from the frequency domain measurements reported in Reference 1, several models
to regenerate the frequency domain characteristics of the channel with a computer simulation are examined.

It is shown that the cumulative distribution functions (CDFs) of the 3 dB width of the frequency correlation function and the RMS delay spread of the channel resulting from these models closely match the CDFs of the actual measurements. The frequency domain models use fewer statistical parameters than the time domain models, and they can therefore be simulated on the computer with considerable ease. The data base used for the confirmation of the results consists of 70 frequency domain measurements performed at the IBM office in the 16th floor of the 32-storey Shawmut Bank building in downtown Worcester and 58 measurements at the second floor of the three storey Atwater Kent Laboratories at the Worcester Polytechnic Institute. In each of the sites, the receiver is fixed in a central location and the transmitter is moved to different locations in a picocell (less than 50 m in diameter) to take the measurements.

Statistical models for the AR parameters: Assuming that the frequency response of the channel forms a second order AR process, the mth sample of a measured frequency response of the channel F_m will be represented by

$$F_m = a_1 F_{m-1} + a_2 F_{m-2} + u_m$$

where a_1, a_2 are the coefficients of the AR model and u_m is the white noise driving the process. In the wideband frequency domain measurements used, the distance between the two samples of the frequency response 0.25 MHz and the measurements cover a 200 MHz band of 0.9-1.1 GHz.

Taking the z-transform of the above equation we have

$$G(z) = \frac{F(z)}{U(z)} = \frac{1}{1 - a_1 z^{-1} - a_2 z^{-2}}$$

where the p_1, p_2 represent the poles of the process. Using this concept, statistical modelling of the channel is reduced to the statistical characterisation of the two poles of the model and the variance of the driving white noise process. In the wideband frequency domain measurements used, the distance between the two samples of the frequency response 0.25 MHz and the measurements cover a 200 MHz band of 0.9-1.1 GHz.

Taking the z-transform of the above equation we have

$$G(z) = \frac{F(z)}{U(z)} = \frac{1}{1 - a_1 z^{-1} - a_2 z^{-2}}$$

where the p_1, p_2 represent the poles of the process. Using this concept, statistical modelling of the channel is reduced to the statistical characterisation of the two poles of the model and the variance of the driving white noise process. In the wideband frequency domain measurements used, the distance between the two samples of the frequency response 0.25 MHz and the measurements cover a 200 MHz band of 0.9-1.1 GHz.

For the purpose of modelling, it is desirable to know the probability distribution of the gain of the AR process for each of the experiment sites. To determine this probability distribution, the cumulative distribution function (CDF) of the received powers for all measurements of an experiment is compared with the theoretical CDFs for log-normal, Weibull and Rayleigh probability distributions. The log-normal probability distribution provides the best fit. The measured mean and variance of the distribution were 0.0091 and 0.00267, respectively for the IBM experiment, and 0.0098 and 0.0357, respectively, for WPI.

Results of computer simulation: The mean, the variance and the ranges provided in Table 1 were used to generate the two

![Fig. 1 CDFs of 3dB width](image)

Table 1 STATISTICS OF THE LOCATION OF THE FIRST TWO POLES FOR THE IBM AND WPI EXPERIMENTS

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Parameter</th>
<th>Average</th>
<th>Standard deviation</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>$</td>
<td>p_1</td>
<td>$</td>
<td>0.9871</td>
<td>0.006832</td>
</tr>
<tr>
<td></td>
<td>ang(p_1)</td>
<td>-18.82</td>
<td>1.989</td>
<td>-22.75</td>
<td>-14.73</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>p_2</td>
<td>$</td>
<td>0.8380</td>
<td>0.008995</td>
</tr>
<tr>
<td></td>
<td>ang(p_2)</td>
<td>-6.355</td>
<td>1.355</td>
<td>-9.376</td>
<td>-2.459</td>
</tr>
<tr>
<td>WPI</td>
<td>$</td>
<td>p_1</td>
<td>$</td>
<td>0.9878</td>
<td>0.005093</td>
</tr>
<tr>
<td></td>
<td>ang(p_1)</td>
<td>-19.04</td>
<td>1.839</td>
<td>-22.44</td>
<td>-14.94</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>p_2</td>
<td>$</td>
<td>0.8624</td>
<td>0.07776</td>
</tr>
<tr>
<td></td>
<td>ang(p_2)</td>
<td>-8.239</td>
<td>1.477</td>
<td>-9.213</td>
<td>-3.549</td>
</tr>
</tbody>
</table>
process is determined from a log-normal distributed random variable with the variance and mean obtained from measurements in that area.

Fig. 1 is a graph of the CDF of the 3dB width of the frequency correlation function that resulted from 100 simulated measurements for each of the four models for the IBM office, and the actual CDF from the 70 measurements. Fig. 2 is similar to Fig. 1 for the RMS delay spreads. The results of the frequency domain characteristics (3dB width of the frequency correlation function) are closer than the time domain characteristics (RMS delay spread). This is because of the fact that frequency correlation information is used for the AR frequency correlation function that resulted from 100 simulated measurements for each of the four models for the IBM office.

The simpler model provides smaller variations of RMS delay spread than the other three models. Though the buildings used for the experiments are completely different, the statistics of the parameters of the models and consequently the time and the frequency domain characteristics of the two environments are very close.

Summary and conclusions: Four statistical models for the parameters of the AR model were examined. It was shown that, for the two sets of measurements considered in this letter, the CDFs of the 3dB width of the frequency correlation function and the RMS delay spread of the measured data and the CDFs generated from the models 1, 2 and 3 were in close agreement. The most dominant parameter of the modelling was shown to be the magnitude of the first pole.

Acknowledgment: This work was supported in part by the National Science Foundation under grant NCR-8703435 and a Raytheon Company fellowship.

K. PAHLAVAN
Electrical Engineering Department
Worcester Polytechnic Institute
Worcester, MA 01609, USA

S. J. HOWARD
Raytheon Company
1061 Boston Post Road
Marlboro, MA 01752, USA

References

Introduction: Inclined slots in the narrow wall of rectangular waveguides (edge slots) have been widely used in the realization of antenna arrays. Most of these designs have been based on an experimental determination of the slot properties. The moment method has been applied to obtain a numerical solution of the integral equation formulation for the self-properties of longitudinal slots in the broadwall of rectangular waveguide. Such analyses assume that the slot radiates through an infinite groundplane for the exterior problem. For the edge slot such arguments are less cogent, and the absence of an appropriate Green's function for a source radiating in the presence of a conducting rectangular cylinder has prevented the direct numerical solution of the edge slot problem. A variational treatment for determining the self-admittance of such edge slots has recently been presented, and represents an important step in the solution of the problem. Although slot wrap-around is accounted for in an approximate manner in the above analysis (as it must be to be of any use at all), the waveguide is assumed to have zero thickness walls and a particular form for the electric field distribution in the slot is assumed. The slot self-properties are sensitive to both these factors.

In this letter we apply the monochromatic finite-difference time-domain (FD-TD) method to determine the properties of the edge slots. Such a differential equation based method obviates the need for the above-mentioned Green's function. No assumptions need be made as to the functional form of the field in the slot. The wall thickness effects are automatically included. The resolution assigned to these unknowns are limited only by the mesh density selected.

Formulation: The numerical sampling region over which the FD-TD lattice is established consists of the interior waveguide region around the slot, and a portion of 'free space' exterior to the waveguide, situated adjacent to the slot. Appropriate absorption boundary conditions are used at the lattice truncation planes interior to the waveguide at which the slot network scattering properties are computed. On the boundary surface of the exterior sampling region free-space absorbing boundary conditions are utilised. Being a differential equation based method, the FD-TD mesh is easily tailored (by an alteration of input data only) to accommodate arbitrary geometries (e.g., the edge slot).

Discussion of computational requirements and supportive results: The dimensions of the slot analysed are identical to those in Figs. 9-12 of Reference 5. With the limited memory capacity available to the present authors the cubed cell size was 0.5 mm on a side. This meant that only three cells could be fitted along the transverse slot dimension, with a 'staircase' approximation along the length of the slot. The exterior sampling region was of rectangular shape, out to a distance of 10 mm from the slot radiating surface, and 15 mm away from the slot in the direction of the waveguide axis. The interior sampling region lattice truncation planes were 15 mm on either side of the centre of the slot, which is sufficient. Except for the interior sampling region, the above is a fairly coarse discretisation, and would not be used to determine data to be used for antenna design purposes. More cells should be used to both properly resolve the slot geometry and permit the field in the slot to be correctly approximated. Furthermore, the exterior sampling region boundary should be at least 32 away from the slot.

With the sampling region used for the results given here there were already 255 000 cells representing approximately