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Abstract—Indoor navigation using RF signals has attracted
tremendous attention in the recent years. However, indoor lo-
calization using RF signaling is very challenging and does not
provide adequate precision for many applications. In this paper
we use Particle Filter (PF) to integrate the Received Signal
Strength (RSS) of WiFi and the Time Of Arrival (TOA) of
UWB RF signaling for precise cooperative localization in indoor
environment. The choice for PF is due to non-linear and Non-
Gaussian channel models for RF localization algorithm. We use
channel models for the RSS of WiFi and the TOA of UWB. The
performance of the PF results are evaluated in a typical indoor
scenario and are compared with the Cramér-Rao-Lower-Bound
(CRLB) for Hybrid (UWB & WiFi) in Cooperative (COOP) and
non-Cooperative (NCOOP) modes.

Index Terms—UWB, TOA, WiFi, RSS, PF, MO, FA, CRLB,
COOP, NCOOP, LOS, NLOS

I. INTRODUCTION

Localization is one of the most crucial components for
carrying out successful cooperative moving objects operations
in civilian and medical domains. Civilian applications include
the removal and handling of unwanted hazardous materials.
Another is emergency responder operations. Examples include
search and rescue of civilians inside burning structures where
access by fire-fighters is limited and/or too dangerous. In
aforementioned scenarios the ability to obtain accurate lo-
cation information for the cooperating moving objects is of
utmost importance for the effectiveness of the operation.

When these applications are concerned, there are several
ways to perform localization. To compare the performance of
these alternative techniques, CRLB is used as the benchmark.
The CRLB results for the Time Of Arrival (TOA) of UWB and
the Received Signal Strength (RSS) of WiFi were investigated
and anlayzed in [1] and [2] respectively. In [3], we showed
that Cooperative localization was very effective in performance
enhancement when using RSS or UWB or both (Hybrid)
signaling. In [3], the CRLB was calculated for the Hybrid
and Cooperative localization using a mix of WiFi and UWB
signaling. It was shown that the TOA-based UWB signaling
results in more precise localization than RSS-based WiFi.
However, the WiFi infrastructure is more readily available
and widespread over UWB infrastructure making it more
commercially viable.

In dynamic tracking applications, adaptive filters are used to
improve the localization accuracy by reducing the estimation
error. Particle filters have shown to be very effective and
widely used for these purposes [4]. Various applications of
PF in Wireless Sensor Networks were discussed in [5].

In this paper, we propose a novel Hybrid WiFi-UWB co-
operative localization using Particle Filter. There are different
issues in implementing particle filters, one important imple-
mentation issue is the Resampling. Our implementation of the
PF is similar to Systematic Resampling approach discussed in
[6]. Due to the complex nature of radio propagation, employ-
ing Hybrid and Cooperative localization methods has become
increasingly attractive. Accuracy of methods such as TOA
and RSS are highly susceptible to non-linear, non-Gaussian
channel models in indoor environments. The Particle Filter is
chosen for this work to deal with such an environment. We
analyze the performance of the Particle Filter versus CRLB by
using the theoretical, IEEE 802.11 channel model for RSS and
the empirical one for UWB ranging error as presented in [7].
For our performance platform, we leverage off the previous
findings in [3], where we used eight fixed anchors (FAs) along
with three moving objects (MOs). The performance of the
PF results are evaluated in a typical indoor scenario and are
compared with CRLB result for the Hybrid (UWB & WiFi), in
Cooperative (COOP) and non-Cooperative (NCOOP) modes.

The rest of the paper is organized as follows: In section
II, we define distance measurement error, describe power
calculation based on 802.11 RSS model, use the power for
TOA-based link error variance selection according to empirical
model from [7] and calculate RSS-based link error variance
from [2]. Section III, a brief CRLB formulation is outlined.
Section IV, we formulate the Particle Filter steps based on
Bayesian method. Section V, we describe the simulation
environment, the definition for Hybrid, Cooperative, non-
Cooperative and various configurations. Section VI, the results
of our research are analyzed in detail. Section VII, we show
the conclusion of our research and findings. October 2, 2014

II. CHANNEL MODELS AND RANGING ERROR VARIANCES

In this section, we define ranging error, power calculation
and channel models for ranging error variances of UWB



TOA-based and WiFi RSS-based ranging techniques. First,
we describe the distance definition and its error, Distance
Measurement Error (DME). We then describe the IEEE 802.11
channel model for power (RSS) calculation. The calculated
power is used to select link error variance for UWB TOA-
based ranging technique according to empirical data [7].
Lastly, we describe the theoretical ranging error variance of
RSS-based ranging technique [2].

A. Ranging Error
Let us assume there are M moving objects (MOs) and A

fixed anchor points (FAs), the 2-dimensional coordinates for
M MOs, LM and A FAs, LA are given by:

LM = [(x1, y1), ...., (xM , yM )]T

LA = [(xf1, yf1), ...., (xfA, yfA)]
T (1)

where (xi , yi); i = 1, ... ,M denotes the x-y coordinate of M
moving objects. and (xfj , yfj); j = 1, ... ,A denotes the x-y
coordinate of A fixed anchors.

For pairs of MO-to-MO or MO-to-FA within the com-
munication range, a measurement of Euclidean distance
dij =

√
(xi − xj)2 + (yi − yj)2 can be obtained using TOA-

UWB or RSS-WiFi ranging techniques. The ranging tech-
niques are susceptible to noise variation of the channel models
hence, the Distance Measurement Error (DME), εij is defined
as:

εij = d̂ij − dij (2)

where d̂ij is the estimate of the distance between pairs. εij
will vary between the pairs according to selected link error
discussed in subsections II-C and II-D. The intent is to find
the location of moving object with respect to fixed Anchor
(FA) locations and compare it with actual location.

We are only analyzing the ranging error variance resulting
from distance estimate, d̂ij using the non-linear, non-Gaussian
channel model and Particle Filter estimator. We make no
assumptions of the speed and the trajectory complexity of the
MOs in our analysis.

B. Power calculation to select ranging error variance for
TOA-based technique

The Received Signal Strength (RSS) for a link between a
pair is calculated based on the distance, dij by:

RSS(dij) = RSS1m − 10α · log(dij) + χ (3)

Where RSS1m is the received signal strength at a reference
distance of 1m, α is the path loss gradient and χ is the
lognormal shadow fading with zero mean and variance σ2

χ.
The values of α, σχ for LOS and NLOS conditions are listed
in different rows in table I.

C. TOA-based ranging error variance
The variance, σ2

εUWB
of Distance Measurement Error in (2)

for UWB-based link is determined by comparing the value of
calculated power in (3) with tabulated range in Table II.

The thresholds and variances defined in table II are based
on Empirical data [7]. There is more general discussion of
Distance Measurement Error in [8].

D. RSS-based ranging error variance

The variance of Distance Measurement Error in (2) for
WiFi-based link is determined theoretically based on deriva-
tion outlined in [2]. The values of α, σχ for LOS and NLOS
conditions are listed in different rows of table I.

σ2
εWiFi

≥ (
ln10

10
)2 ·

σ2
χ

α2
· d2ij (4)

III. CALCULATION OF CRLB FOR PERFORMANCE

To calculate the CRLB, we need to calculate the variance(s)
of Distance Measurement Error(s) (DME) for all the links
among the MOs and the MOs-to-FAs points. The CRLB
provides a lower bound on the error covariance matrix for
an unbiased estimate of LM . For a given estimate of the
MOs, L̂M and Gaussian range measurement R, the Fisher
Information Matrix (FIM) can be represented by [9]:

J(LM ) = E[5LM
lnfR(r;LM )][5LM

lnfR(r;LM )]T (5)

where fR(r;LM ) is the joint Gaussian PDF given by:

fR(r;LM ) =
1

(2π)K |
∑
| 12
× E (6)

where

E = exp

{
−1

2
[r − µ(LM )]T

∑−1
[r − µ(LM )]

}
(7)

and µ(LM ) is the vector of the actual distances between the
nodes corresponding to available K measurements. FIM for
the specific PDF in (6) can be written as:

J(LM ) = [G(LM )]T
∑−1

[G(LM )] (8)

where

G(LM )T =

(
cosφ1 cosφ2 ... cosφk
sinφ1 sinφ1 ... sinφk

)
(9)∑

= diag(λ1 λ2 ... λk) (10)

φi representing the angle between the nodes from ith mea-
surement. and λi is the variance of range estimate from the

TABLE I
PATH LOSS GRADIENT & SHADOW FADING STD

RSS1m UWB WiFi
(dBm) α σχ α σχ

LOS -42 2.0 6.8 2.0 8.0
NLOS -42 5.6 8.5 3.5 8.0

TABLE II
TOA-BASED EMPIRICAL DATA

Power σ2
εUWB

(dBm)
−∞ < RSS(dij) ≤ -80 (0.12)2

-80 < RSS(dij) ≤ -100 (0.3)2

-100 < RSS(dij) < +∞ (1.4)2



ith measurement. The variance calculation are discussed in
subsections II-C and II-D that are used to replace λi based on
a given configuration shown in Table III. The CRLB is given
by:

CRLB = [J(LM )]−1 (11)

And, the Root-Mean-Square-Error, RMSE is given by:

RMSE =
√
trace(CRLB) (12)

IV. PARTICLE FILTER FORMULATION

The Particle Filter is chosen for this work due to nature
of non-closed form, non-linear and non-Gaussian channel
models for RF localization algorithm. The PF state is defined
by uniformly Random X or Y movement of moving object
(MO). The PF observation is modeled based on empirical
data for UWB-TOA and theoretical approach for WiFi-RSS
ranging. The distance of the moving object is obtained with
respect to fixed anchors (FA) and other moving objects in
cooperative mode. In the following subsections we describe the
assumptions for PF setup, derive PF recursion step, outline the
PF implementation and discuss the simulation environment.

A. PF setup
The notations moving forward and the assumptions for

Bayesian recursion are defined here. First, the notations used
are, P denoting probability, p denoting the index of a particle,
nP denoting number of particles and nSMP denoting number
of samples (movement). Second, the PF State (or movement)
and Observation (or measurement) are defined as dp and
RSSp respectively. Lastly, given the random nature of MO
movements and independent Observations we assume that the
current location of MO depends only on the previous location
hence, a Markov Process for the MOs movement (PF State),

P(dp/d0:p−1) = P(dp/dp−1) (13)

and, the current PF observation, RSSp depends only on the
current PF state dp, therefore:

P(RSSp/d0:p, RSS0:p−1) = P(RSSp/dp) (14)

B. PF Recursion Step
Leveraging off of the assumptions highlighted in subsection

IV-A, we start with Bayesian rule and skip detail derivation
for future paper, we arrive at the recursion for Posterior
of State given our measurements, P(d0:p/RSS0:p), applying
Bayes rule:

P(d0:p/RSS0:p) =
P(RSS0:p/d0:p)∗P(d0:p)

P(RSS0:p) (15)

Starting with Bayes rule and applying our assumptions we
arrive at PF Recursion step:

P(dp/RSS0:p) =
P(RSSp/dp)

P(RSSp/RSS0:p−1)
∗ P(dp/RSS0:p−1)

(16)
where p = 1, 2, ..., nP . Basically, we want to pick the most
suitable next state dp given the set of observations RSSp.
Obviously, we like to pick the most likely or highest marginal
Posterior.

C. PF implementation

Our model for state are sample points shown on Fig. 1. The
Observation model is defined in (3). However, this is just a
Power measurement and there are other transformations due
to LOS, NLOS, UWB, WiFi conditioning in order to evaluate
our Distance Measurement Error hence, link error variance.

By observing (16), it appears that the Prior for the past
p− 1 observations are scaled to form the marginal Posterior
on the left hand side. The Scale factor can be considered as
Weight factor where we can recursively update by perform-
ing nP scaled version of Prior to form a new Posterior
distribution.

Weightp =
P(RSSp/dp)

P(RSSp/RSS0:p−1)
(17)

Given dp, the numerator can be measured and the denominator
does not depend on the state, dp. For the purpose of our
simulation we will use a Gaussian Prior with variance σ2

RSS

and the mean is adjusted by the power calculated for dp,
RSSp.

fW (wp) =
1

2πσ2
RSS

exp

{
− (RSSref −RSSp)2

2σ2
RSS

}
(18)

RSSref is the power at the actual location. The state samples
are also distributed in random using Gaussian with a different
variance σ2

dp
prior to Observation (measurement). All the

configurations outlined in Table III are simulated using the
pseudo steps in Algorithm 1. Now that we got some idea
of the work involved, let us evaluate some initial result for
performance of PF in subsection V-A and set the stage for the
intended evaluation in section VI.

Algorithm 1 PF Algorithm flow
1: if (NCoop) then . MOs in NCoop mode
2: RefPoints = 8; . 8 Fixed Anchors
3: else . 3 Coop MOs
4: RefPoints = 11;
5: end if
6: for S = 1→ nSMP do . Objects movement
7: for R = 1→ RefPoints do
8: for p = 1→ nP do . Particle iterations
9: a) Measurement

10: b) Weight update
11: end for
12: 1) Normalize the Weight
13: 2) Randomly Sample the above CDF
14: 3) Pick maximum likelihood sample
15: 4) Selection of new State, hence lowest DME
16: end for
17: end for

V. PERFORMANCE ANALYSIS SCENARIOS

In this section, we describe the simulation environment and
setup in detail. The Hybrid, Cooperative, non-Cooperative are
defined and various configurations are presented in tabular
form.
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Fig. 1. Eight Fixed Anchors {AF1, AF2,.....,AF8} and three moving objects
{MO1, MO2, MO3}. The objects move along the dotted lines and in the
direction of arrows.

A. Simulation environment

In Fig. 1, there are eight FAs and three MOs, two mov-
ing clockwise and the third counter-clockwise. The X or
Y movements are advanced according to uniformly random
distribution. In this section we are evaluating the effect of
number of particles nP , different variance values for State
and Observation to set the stage for the intended evaluation.
In Fig. 2(a), we are evaluating the effect of 8 and 16 particles
(nP = 8, 16) for FA and MO in WiFi-enabled mode. In COOP
mode, the results are very close however, in NCOOP mode
the result for higher number of particle (nP = 16) is slightly
better, from here on the evaluation is focused on nP = 16. In
Fig. 2(b) and 2(c) the variances for State (st) and Observation
(oz) are varied for COOP and NCOOP respectively. The FAs
and MOs are UWB-enabled. As expected, at low variances for
state and observation, both at 2 we get the best performance
and conversely we get the worst when both are set to 8. The
result for UWB-enabled mode is presented graphically in Figs.
2(b) and 2(c). For other scenarios (WiFi, Hybrid) are reviewed
(is not included in this paper) and the results corroborates with
the results shown in this paper. After this initial PF evaluation,
we use the following parameters for the reset of this paper:
nP = 16, σ2

dp
= 8, & σ2

RSS = 8.

B. Hybrid and Cooperative Configuration

Hybrid is when a pair (MO-to-MO or MO-to-FA) can com-
municate over WiFi and UWB RF signaling hence RSS-based
and TOA-based ranging is applied respectively. Cooperative,
refers to MOs communicating among each other in pairwise

TABLE III
CONFIGURATION & SELECTED RANGING TECHNIQUE

Mode FA MO MO to FA MO to MO (COOP mode)
WiFi WiFi RSS-based RSS-based

Hybrid WiFi UWB RSS-based TOA-based
UWB UWB TOA-based TOA-based

Hybrid UWB WiFi TOA-based WiFi-based
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Fig. 2. 32 Samples, 8 Fixed Anchors and 3 Moving Objects.
(a) Comparison of 8 vs. 16 particles for Coop. and Non-Coop. mode.

Effect of different State and Obsevation variances on error:
(b) COOP mode
(c) NCOOP mode

configuration. The choice of ranging technique is determined
based on a given configuration shown in Table III.



TABLE IV
SIMUALTION ENVIRONMENT

Sim Parameters PF Parameters
nSMP FAs MOs nP σ2

dp
σ2
RSS

32 8 3 16 8 8

VI. RESULTS AND DISCUSSION

The simulation environment for all our simulation runs mov-
ing forward is based on parameters outlined in Table IV. In
this section, the Figs. 3(a), 3(b), 4(a), 4(b) and tabulated results
in tables V and VI are analyzed and the performance of PF is
compared to CRLB. In our review of the results we use the
50th percentile and assess the performance accordingly. Also,
in each of the figures to be discussed, there is a mix of COOP
and NCOOP both for PF and CRLB. The COOP and NCOOP
graphs for CRLB are represented by solid Blue and Red lines
respectively. In general, one can observe an improving trend
stemming from Hybrid COOP mode. However, it is evident
that PF does not perform as well in low error condition, for
example UWB. The highlights are as follow:

WiFiAnc.,WiF iObj., Fig. 3(a), where FAs and MOs are
WiFi-enabled hence high RMSE values, the PF tracks the
CRLB both in COOP and NCOOP mode. The PF is off by
0.5 meter both in COOP and NCOOP mode with respect to
the CRLB.
Hybrid (WiFiAnc., UWBObj.), Fig. 3(b), in Hybrid mode,

the MOs are UWB-enabled and FAs remain WiFi-enabled.
In here, we have high RMSE values aided by low RMSE
values MOs improving the overall RMSE. As a result, the
PF outperfoms the CRLB when in COOP mode. In NCOOP
mode, there are not much differences relative to non-Hybrid
mode per Fig. 3(a). The PF performs better by 0.5 meter in
COOP and is off by 0.7 meter in NCOOP mode relative to
the CRLB.
UWBAnc., UWBObj., Fig. 4(a), where FAs and MOs are

UWB-enabled hence low RMSE values, the PF does not
perform well relative to the CRLB in neither cases, COOP
or NCOOP mode. The PF performs worse by 0.12 meter in
COOP and 0.17 meter in NCOOP mode compared to the
CRLB.

TABLE V
RMSE DEVIATION FOR PF WITH WIFI-ENABLED FAS

Mean STD
WiFi-enabled MOs in Coop mode

PF 5.0500 0.9775
CRLB 4.5540 0.8112

WiFi-enabled MOs in NCoop mode
PF 5.4630 1.1340
CRLB 5.0400 0.4436

UWB-enabled MOs in Coop mode
PF 2.4230 1.2320
CRLB 2.7010 1.1280

UWB-enabled MOs in NCoop mode
PF 5.8140 1.0890
CRLB 5.0670 0.4977
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Fig. 3. Particle filter error versus CRLB both operating in COOP and NCOOP
mode using WiFi and Hybrid signaling:
(a) WiFiAnc., WiFiObj.
(b) Hybrid(WiFiAnc., UWBObj.)

Hybrid (UWBAnc.,WiF iObj.), Fig. 4(b), in Hybrid mode,
the MOs are WiFi-enabled and FAs remain UWB-enabled.
In here, we have low RMSE values mixed in with high
RMSE values MOs which are not helping the overall RMSE
as compare to 3(b). The PF performs better in COOP than

TABLE VI
RMSE DEVIATION FOR PF WITH UWB-ENABLED FAS

Mean STD
WiFi-enabled MOs in Coop mode

PF 0.3631 0.1955
CRLB 0.2294 0.0778

WiFi-enabled MOs in NCoop mode
PF 0.4334 0.2079
CRLB 0.3104 0.1661

UWB-enabled MOs in Coop mode
PF 0.2361 0.0956
CRLB 0.1940 0.0459

UWB-enabled MOs in NCoop mode
PF 0.4083 0.2283
CRLB 0.2785 0.1350
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Fig. 4. Particle filter error versus CRLB both operating in COOP and NCOOP
mode using UWB and Hybrid signaling:
(a) UWBAnc., UWBObj.
(b) Hybrid(UWBAnc., WiFiObj.)

NCOOP mode. In NCOOP mode, the perfomance is similar to
non-Hybrid mode result per Fig. 4(a). The PF performs worse
only by 0.025 meter in COOP and worse by 0.15 meter in
NCOOP mode in comparison to the CRLB.

The RMSE deviation results for the PF with parameters
(nP = 16, σ2

dp
= 8, & σ2

RSS = 8) are tabulated in tables
V and VI. There is higher Mean values for the PF except in
Hybrid COOP where the FAs are WiFi-enabled and MOs are
UWB-enabled. The STD ratio (PF/CRLB) for UWB COOP
is almost the same as WiFi NCOOP. The STD for the PF is
higher than the CRLB in all cases.

VII. CONCLUSIONS

In this paper, we implemented a Particle Filter for the non-
linear, non-Gaussian channel models for RF localization in
a Hybrid Cooperative configuration. We used UWB TOA-
basedand WiFi RSS-based ranging techniques. We formulated
the Bayesian approach to show the recursion step for Par-
ticle Filter implementation. We simulated and analyzed the

quantitative performance of PF versus CRLB in Cooperative
(COOP) and Non-Cooperative (NCOOP) both in Hybrid and
non-Hybrid configurations. When the moving objects (MOs)
and fixed anchors (FAs) are UWB-enabled, hence low error
(RMSE) value, we showed that the PF performs poorly both
in COOP and NCOOP compared to CRLB. However, in a case
when moving objects and fixed anchors are all WiFi-enabled,
hence high error (RMSE) value, the PF performs more closely
and consistently compared to CRLB. In general, the particle
filter performs much better in environment with high RMSE
value in non-Hybrid configurations. We showed that in Hybrid
WiFi/UWB and Cooperative configuration, the Particle Filter
consistently performs well in either of low or high RMSE
value environments.
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