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Overview of the Program

This brochure describes the indoor geolocation research program at the Center for
Wireless Information Network Studies (CWINS), Worcester Polytechnic Institute. The
material is divided into two parts. The first part provides an overview of the indoor
geolocation program, the history of CWINS, a summary of related research grants, and
descriptions of the measurement, modeling, and test facilities available at the Center.
The pioneering work of the center in indoor geolocation has resulted in several PhD and
MS theses and a number of seminal publications. The first part of the brochure also
includes a comprehensive bibliography of the published research work of the Center
related to the indoor geolocation. The second part of the brochure provides reprints of
selected semina research papers in indoor geolocation published by members of the
Center, reflecting the diversity and depth of the research program.



Overview of the Indoor Geolocation Program

The Indoor Geolocation research program at WPl began in 1997 with a joint project
conducted by CWINS and TASC/Litton as a part of DARPA’s Small Unit Operation
Situation Awareness System (SUO/SAS) program. The pioneering research work of
CWINS on radio channel modeling for indoor geolocation application in SUO/SAS
program demonstrated the challenges to precise indoor geolocation posed by severe
multipath conditions. Since 1997, in addition to active participation in DARPA’s leading
projects in indoor geolocation Prof. Pahlavan, the director of CWINS, has had close
interaction with pioneering indoor positioning commercial companies such as PinPoint,
InTrak, Ekahau, Skyhook, and PanGo. The successor to the SUO/SAS project was
another joint research initiative between CWINS and the Center for Wireless
Communications (CWC), University of Oulu, Finland in 1999 which addressed indoor
positioning exploiting the OFDM signals used in IEEE802.11a and HIPERLAN-2
WLANS. Inthe year 2000 CWINS received a DoD DURIP equipment grant to develop a
real-time hardware platform for performance evaluation of modern telecommunication
and geolocatoin systems. In the same year CWINS received an NSF award to establish a
foundation for indoor geolocation science and technology. This work resulted in the first
application of the super-resolution algorithms to RF indoor positioning and the first
models relating the distance measurement error using time-of-arrival (TOA) estimation to
the bandwidth of an indoor geolocation system. In 2002, the Center received an
equipment grant from NSF to update its facilities for UWB measurements operating at
frequencies up to 40GHz. In 2004 the Center and IWT won a DoD-sponsored SBIR
award for development of precision indoor geolocation using UWB technology. In this
work UWB channel models and positioning algorithms in variety of environments are
under development. In 2005, CWINS and Draper Laboratory won a DARPA award to
work on innovative algorithms for indoor positioning. The current focus of the
Center’s research is on extending the knowledge base of channel modeling for indoor
geolocation, use the propagation models to develop redlistic agorithms for precision
indoor positioning, and identifying important new applications for this technology.

Key features of the indoor geolocation program at CWINS are:

Pioneering experience in indoor radio channel measurement and modeling for
indoor geolocation and UWB technol ogy

A unique real-time laboratory testbed for performance analysis of positioning
algorithms using Ray Tracing software and the PROPSIM real-time RF multipath
channel ssimulator

Pioneering experience in application of super-resolution algorithms to accurate
indoor geolocation using RF signals

Experience in development of positioning algorithms for TOA and received signal
strength (RSS) systems

Experience with both commercial and DoD requirements and applications



History of CWINS

The Center for Wireless Information Network Studies (CWINYS) is a world-renowned
compact wireless research laboratory having a long and successful history of research
aliances with industrial and other academic organizations. The Center has performed
research for governmental agencies and has developed close ties with many world-
leading organizations in the wireless industry. The core competence of the center is in
indoor radio channel propagation measurement modeling and in the development of
testbeds and tools for design and performance monitoring of location-aware broadband
wireless indoor networks. The unique measurement and test facilities at CWINS have
been acquired gradually through several NSF and DoD grants, industrial donations, and
WPI’ s cost sharing program for research equipment grants.

The research program in wireless information networks at WPl was established by
Professor Kaveh Pahlavan in 1985 and was the first research program of this type in the
United States. In 1986, the program was awarded the first NSF grant addressing modern
indoor wireless communications. In 1989, the center participated in founding the annual
|EEE International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), first convened in the UK, and in 1992 and 1998 organized the conference in
Boston. In 1991, CWINS organized the First IEEE Workshop on Wireless LANSs, which
was held at WPI. In 1994, the Center initiated the International Journal on Wireless
Information Networks, the first journal in this field. In 1995, Prof. Pahlavan and Dr. Allen
Levesque published Wireless Information Networks (John Wiley and Sons), the first
graduate-level textbook on wireless networks. In 1995 the Center formed the Wireless
LAN Research Laboratory (WLRL) as an industrial research aliance to address the
newly growing interest in WLAN technology. In 1996, Prof. Pahlavan was elected as a
Fellow of the IEEE for his contributions in wireless office information networks. In 1997,
the Center expanded the scope of activity to perform pioneering research on indoor and
short-range geolocation applications for the Small Unit Operation Situation Awareness
System (SUO/SAS) program under DARPA sponsorship. Also in 1997, the Center
initiated a long-term active collaboration with the University of Oulu, Nokia, and several
other leading wireless companies in Finland. In 1999, Prof. Pahlavan was the first non-
native of Finland to receive the prestigious recognition as Nokia Fellow. In 2000, he was
the first scholar to receive the Fulbright-Nokia Fellowship. In 2003 Prof. Pahlavan was
co-chair of the International Workshop on Ultra Wideband Systems, Oulu, Finland and in
2004 he served as co-chair of the International Workshop on Wireless Adhoc Networks,
Oulu, Finland. In 2005 he is serving as General Chairman of the IEEE International
Conference on Mobile Adhoc Sensor Systems, Washington, D.C.

In the past two decades, numerous organizations worldwide have cooperated with
CWINS in sponsoring research and development projects, educating their staffs, and
arranging for corporate consulting. More details of CWINS activities are available at
WWW.Ccwins.wpi.edu.



http://www.cwins.wpi.edu

Measurement, Modeling, and Test Facilities

The experimental research program at CWINS utilizes advanced measurement, modeling,
and test equipment, which has been acquired gradually since the 1985 inception of the
wireless research program through external funding as well as supplemental funding from
WPI’'s cost sharing program.  Since 1995 CWINS has received two NSF equipment
grants that allowed purchase of around $550K of equipment, one DoD DURIP equipment
grant for approximately $250K, and a number of industrial contributions on the order of
$100K each. Using CWINS comprehensive research equipment for multi-layer
performance evaluation of location aware broadband wireless networks, a variety of
channel-measurement and testbed facilities have been developed and used in the indoor
geolocation research program.  These measurement and testbed facilities are the
foundation for modeling channel behavior for design and performance evaluation of
positioning algorithms using TOA, RSS, and MIMO technologies.

Figure 1 shows the Agilent 50GHz 85107B Network Analyzer System and several UWB
antennas acquired through NSF research equipment grants. This equipment is used for
measurement of the UWB radio channel propagation characteristics, for the analysis of
the behavior of TOA in multipath-rich indoor areas, also shown in Figure 1. These
measurements are used for channel modeling and performance evaluation of indoor
geolocation agorithmsin several DARPA sponsored projects at the Center.
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Figure 1. 50GHz Agilent Network Anayzer, UWB antennas, and a sample measurement
of the multipath characteristics of an indoor radio channel for indoor geolocation
applications.

Figure 2 shows CWINS' unique real-time laboratory testbed for evaluating the effects of
multipath on the performance of indoor positioning systems. Three WLAN access points
(APs) are connected to three of the eight channels of the PROPSIM C8 real-time channel
simulator acquired through a DoD DURIP research equipment grant. The outputs of the
channel simulators are combined and fed to the WLAN PCMCIA card of a laptop



running the Ekahau positioning engine.  The computer controlling the PROPSIM
channel ssimulations is running CWINS proprietary 2D Ray Tracing (RT) software with
its graphical user interface (GUI). The desired location of the APs, the laptop, and the
training points needed to calibrate Ekahau software are fed to the GUI of the RT
software. The RT generated channel impulse responses are then fed to the PROPSIM C8
to simulate the multipath conditions of the channel in the real-time. Figure 2 also shows
a sample performance results for the Ekahau software for 1, 2, and 3 APs and 4, 10, and
27 training points. This repeatable environment can be simulated for comparative
performance evaluation of other algorithms and technol ogies
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Figure 2: Indoor geolocation laboratory testbed and a sample performance plots for the
Ekahau software.

More recently the CWINS laboratory has used its latest NSF research equipment grant to
expand its facilities to incorporate RF isolation Azimuth chambers into its performance
evaluation facilities in real-time ssimulated fading multipath conditions.  This facility
allows cabled laboratory test of wireless technologies using highly-RF-isolated Azimuth
chambers, allowing for repeatable and automated test of wireless technologies. Figure 3
shows the unique testbed at CWINS using the Azimuth RF-isolated chamber and
PROPSIM real-time multipath channel simulator. This setup alows RF-isolated
laboratory test in extensive multipath conditions for wireless devices operating from
350MHz up to 6GHz, with bandwidths of up to 70MHz. This testbed can be used for
automated performance evaluation of various features of wireless devices such as
coverage, roaming, and positioning accuracies.  Figure 3 shows a sample throughput
versus path-loss performance of aWLAN measured by Azimuth test facilities.

Figure 3: RF isolated multipath testbed at CWINS using Azimuth RF chamber and PROPSIM
real time channel simulator.



The following table summarizes the major pieces of equipment available in CWINS,
which can be used for experimental research in channel measurement and modeling and
performance evaluation of wireless networks.

Major Equipment at CWINS: Item Description

Proprietary 3-D and 2-D Ray Tracing Software

2-D PlaceTool for WLAN Planning

Ekahau Positioning Engine 2.0

PinPoint 3D- Local Positioning System

PropSim — C8 Wideband Multi channel Simulator

Agilent 85107B Network Anayzer System, 45MHz to 50 GHz
HP-8753B 6 GHz Network Analyzer

HP-85047A S-Parameter Test Set

HP-3780A 10 Mbps Pattern Generator and Error Detector
Azimuth 801W Test System for WLANS

Brix Network Performance Evaluation System

HP Open View Network Node Manager

HP Internet Advisor - LAN/WAN Protocol Analyzer
Tektronix 11402 Digitizing Oscilloscope

HP-8082A Pulse Generator

Mobiwave BPA-D10 Bluetooth Protocol Analyzer - Software
AiroPeek NX for windows - WLAN Protocol Analyzer

Axis 9010A Bluetooth Access Point

Agilent E4419B Dua Channel EPM Series Power Meter
Agilent E440A PSA Series Spectrum Analyzer, 3Hz to 26GHz
Kalpana Ethernet Switch Pro 16

Cisco 4000 Series Router

IEEE 802.15.4 radio modules for adhoc networking experiments
Numerous |IEEE 802.11 a,b,g access points and PCMCIA cards
Numerous laptops and PCs for network formations




Indoor Geolocation Related Research Grants

Kaveh Pahlavan (CWINS/WPI) and Robert Tingely (Drapers Laboratory)

DARPA: BAA 04-031

Title of Award: Innovative Indoor Geolocation Using RF Multipath Diversity.
Award amount (and period): $370K Phase I, $754K Phase Il (begun March 2005)

In a BAA 04-031 project between CWINS/WPI and Draper Laboratory, the primary objective is to
enable accurate, robust localization and tracking of people/assets/objects in indoor environments.
This will be accomplished by developing a signal processing methodology and algorithms which
address several fundamental limitations of existing active, passive, or aided concepts. This
development will be based on localization and tracking of electronic tags capable of receiving and
retransmitting (with or without alteration) signals received from known signal sources located
within a local network. The key innovation is to more fully exploit the diversity of measurement
phenomena and unique waveform characteristics of indoor RF multipath signals. Measurements
of received signal strength, angle of arrival, time of arrival, time difference of arrival and Doppler
will be exploited, as appropriate, for each individual multipath signal element. CWINS works on
the analysis and modeling of the multipath and performance of traditional algorithms and Draper
Laboratory works on algorithms exploiting multipath diversity.

Jim Silverstrim (IWT, Forest, VA), Kaveh Pahlavan (CWINS/WPI)
DARPA/DoD SBIR: BAA 03-029

Title: Innovative Methods for Geolocation and Communication with UWB

Mobile Radio Networks
Award amount (and period): $70K Phase I, $700K Phase Il (begun Feb. 2004)

In this project CWINS and IWT, a small wireless radio development firm, join forces to design an MB-OFDM
UWB system with indoor positioning capabilities. The main contribution of CWINS is to characterize UWB
RF propagation in various environments and develop indoor positioning algorithms that support accurate
indoor positioning in an adhoc networking environment. IWT will design the hardware for implementation of
the actual communication network. Phase | of this project was completed successfully and we are awaiting
the start of Phase Il. In this project Prof. Pahlavan’s group used the UWB measurements in 3-6GHz bands
to develop a novel model for indoor geolocation. The model was then used for evaluation of indoor
geolocation algorithms.

Kaveh Pahlavan and Emmanuel Agu (CWINS/WPI)

NSF GRANT NO. CISE-0303592

Title of Award: An Integrated Multi-Layer Wireless LAN Testbed

Award amount (and period): $284K plus $95K WPI cost sharing (Sept. 2003 to Aug. 2006)

In this project CWINS has been funded to purchase equipment that will significantly enhance its
research activities in wireless networks for multi-media applications. The principle feature of this
equipment enhancement is an experimental wireless LAN testbed that will be used to serve as a
test environment for multi-layer design and performance monitoring. In this testbed, researchers
working at all protocol layers of the network will conduct their research to evaluate the impact of
wireless broadband access on the design and performance analysis. Multimedia services such
as voice, text and image streams will be provided to terminals dispersed over the geographical
area covered by the testbed. The planned equipment includes a network analyzer, spectrum
analyzer, and RF power meter for physical layer scenario development up to 50GHz, which
includes all bands currently considered for UWB systems. Other planned equipment includes
wireless access points, a central router and switch, network management and monitoring



software, laptop computers, PDAs, wireless LAN IP phones, and head-mounted displays as well
as a traffic generator and protocol analyzers for packet generation and performance monitoring.
The wireless LAN Network Interface Cards (NICs) include IEEE 802.11 as well as Bluetooth
cards for both laptop computers and PDAs.

Kaveh Pahlavan (CWINS/WPI)

NSF Grant No.: ECS-0084112

Title: Indoor Geolocation Science for 4G Wireless Information Networks
Award amount (and period): $270K (Aug. 2000 to Sept. 2003)

The principal research goal of this project was to provide a foundation for the indoor geolocation
science needed in the design and performance evaluation of indoor geolocation systems. Two
specific research objectives in this project were (1) To analyze the multipath characteristics of the
indoor radio propagation that affect the performance of indoor geolocation systems through
empirical broadband measurements in typical sites, and design of statistical measurement-based
and geometrical models for the behavior of the channel. (2) To use the results of objective 1 to
lay a foundation for the design and performance evaluation of distributed indoor geolocation
systems capable of locating objects in smart indoor spaces where numerous unreliable sources
interact to provide an accurate location of each element. For the first objective indoor channel
measurements of the TOA of the first path at GHz frequencies were performed to prepare a
database for future research in this field. The measurement data base includes LOS and OLOS
measurements. Results of these measurements were used to analyze the effectiveness of the
super-resolution algorithms. Also, a novel model for the distance measurement error for indoor
geolocation was developed under this project.

Kaveh Pahlavan, Allan Levesgue and Jacques Beneat (CWINS/WPI)

Sponsored by DoD DURIP program

Title: A Hardware Platform for Real Time Wireless Channel Simulation for Modern
Telecommunication and Geolocation Military Applications

Award Amount (and Period): $278K (April 2000 to May 2001)

Using the funding in this project CWINS purchased a PROPSim C8 hardware platform for
development of a real time RF channel simulation environment. PROPSIim is currently the
world’s leading hardware platform used for real time simulation of wireless channel behavior for
cellular networks and WLANs. In addition to simulation for traditional communication systems,
the platform can simulate geolocation and smart antenna environments vital to modern military
and commercial communication projects. The simulator allows us to test modern
telecommunication and geolocation systems quickly and thoroughly under controlled, realistic,
and repeatable channel conditions in the laboratory, thereby reducing the time and cost of field
tests through improved and better focused test planning.

Kaveh Pahlavan (CWINS/WPI)), Matti Latva-Aho (CWC/U. of Oulu, Finland)
Sponsored by TEKES, Nokia and Sonera, Finland

Title: Wireless Indoor Geolocation and Voice Over IPv6 (WINGIP)

Award Amount (and Period): $420K (Jan. 1997 to Dec. 1998)

In this project CWINS, WPI and CWC, University of Oulu Finland received funding from TEKES, Nokia,
and Finnish Air force to work on traffic engineering and architecture of IGT-WIN systems. This project
was focused on practical telecommunication aspects in the design of PHY and MAC layers and in the
general architecture of the network. Design of system architecture and traffic engineering for IGT-WIN
networks were in its infancy. A good solution for this problem involves understanding the worldwide
evolution of products and standards. For this reason CWINS-CWC team that has interaction with Nokia
and other leading commercial wireless companies is an ideal team to pursue this design. The specific
goals of this project were to study the architecture of the existing geolocation products, study the
progress in PHY and MAC layer design for Bluetooth and Home RF projects, design PHY and MAC
layers to support both geolocation and telecommunication applications, and design an architecture for
the Vo-IP network. The project resulted in several graduate theses in the US and Finland.




Paul Creamer and Joe Pizano (TASC, Bedford, MA), Kaveh Pahlavan and Jim Matthews
(CWINS/WPI)

DARPA Grant No.: BAA 97-14 (SUO/SAS)

Title: Urban Geolocation System Architecture Analysis and Demonstration

Award amount (and period): $1.2M (June 1997 to Dec. 1998)

The objective of this project was to implement an urban geolocation demonstrator. In the course
of the project, it was discovered that due to severe multipath conditions in urban and indoor areas
traditional GPS receivers are unable to provide an accurate measurement of the location of
objects within the buildings. Preliminary results of ray tracing simulation and initial measurements
showed that in many situations the signal arriving from the direct path (DP) is not the strongest
signal arriving at the receiver. Traditional receivers, however, lock to the path associated with
the strongest received signal. Therefore, the estimated distance found with traditional receivers
may correspond to an arbitrary distance that includes a number of reflections of the signal before
it arrives at the receiver. This observation revealed a need for research in modeling of the indoor
radio channel and design of new signal structures and algorithms for indoor geolocation that led
to other indoor geolocation projects pursued at WPI. The preliminary results of this project were
presented in several DARPA open review workshops, two DARPA reports, and several
pioneering papers and presentations.
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Publications in Indoor Geolocation

Selected Journals/Book Chapters

K. Pahlavan and A. Levesque, Wireless Information Networks, John Wiley and
Sons, Chapter 13: RF Location Sensing, Second Edition 2005.

X. Li and K. Pahlavan, “Super-resolution TOA estimation with diversity for
indoor geolocation”, |EEE Trans on Wireless Comm., Dec. 2003.

K. Pahlavan, X. Li, and J. Makela, "Indoor Geolocation Science and
Technology", IEEE Comm Soc. Mag., Feb. 2002.

K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks — A Unified
Approach, Chapter 14: Wireless Positioning Systems, Prentice Hall, 2002.

R. Tingley and K. Pahlavan, "Measurement of the Time-Space Characteristics of
Indoor Radio Channel", IEEE Trans. on Instrumentation and Measurements,
September 2000.

K. Pahlavan, P. Krishnamurthy and J. Beneat, “Wideband Radio Propagation
Modeling for Indoor Geolocation Applications’, IEEE Communications
Magazine, April 1998.

K. Pahlavan and A. Levesque, Wireless Information Networks, 1% edition, John
Wiley and Sons, 1995. First comprehensive textbook published in wireless
networks.

Conferences

B. Alavi, K. Pahlavan, N. Alsindi, and X. Li, ” Indoor Geolocation Distance Error
Modeling using UWB Channel Measurements’, The 16th Annua |EEE
International Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC-2005), September 11 - 14, 2005, Berlin, Germany.

B. Alavi and K. Pahlavan, “Analysis of Undetected Direct Path in Time of Arrival
Based UWB Indoor Geolocation”, Proceedings of IEEE 62nd Semiannual
Vehicular Technology Conference, September 25-28, 2005.

B. Alavi, K. Pahlavan, X. Li, and N. Alsindi, "Indoor Geolocation Distance Error
Modeling with UWB Technology,” Proceedings of IASTED 2nd International
Conference on Communication and Computer Networks, CCN 2004, Nov. 8-10
2004.

M. Heidari and K. Pahlavan, Performance Evaluation of Indoor Geolocation
Systems Using PROPSIm Hardware and Ray Tracing Software, IWWAN, Oulu,
Finland, June, 2004.

M. Kanaan and K. Pahlavan, CN-TOA a New Algorithm for Indoor Geolocation,
|[EEE PIMRC, Sep 2004.

M. Heidari and K. Pahlavan, “A Testbed for Real-Time Performance Evaluation
of Indoor Geolocation Systems’ IEEE Wireless and Microwave Technology
(WAMI), 2004 April 15,16, 2004.



M. Kanaan and K. Pahlavan, A comparison of wireless geolocation algorithms in
the indoor environment, Proceedings of the IEEE WCNC, April 2004.

N. Alsindi and K. Pahlavan, “Performance of TOA Estimation Algorithms in
Different Indoor Multipath Conditions’, Proceedings of the IEEE WCNC, April
2004.

A. Hatami and K. Pahlavan, In-building Intruder Detection for WLAN Access,
The IEEE Aerospace and Electronic Systems Society conference, PLANS,
Monterey, CA, April 2004.

Emad D. Zand, K. Pahlavan and Jacques Beneat, Frequency Domain
Measurement for Indoor Geolocation,to be submitted for IEEE PIMRC
September 2003.

B. Alavi and K. Pahlavan, “Bandwidth effect on distance error modeling for
indoor geolocation”, IEEE-PIMRC 2003., Volume: 3, 7-10 Sept. 2003,
Pages:2198 — 2202.

B. Alavi and K. Pahlavan, "Modeling of the Distance Error for Indoor
Geolocation", IEEE WCNC, 2003.

X. Li, K. Pahlavan, and J. Beneat, “Performance of TOA estimation techniques in
indoor multipath channels’, IEEE PIMRC, Portugal, Sep. 2002.

X. Li, K. Pahlavan, "Indoor Super Resolution TOA Measurement in Frequency-
Domain", IEEE Workshop on WLANS, Boston, Sep. 27-28 2001.

X. Li and K. Pahlavan, M. Latva-aho, and M. Ylianttila, "Indoor Geolocation
using OFDM Signals in HIPERLAN/2 Wireless LANS', IEEE PIMRC'2000,
London, Sep. 2000.

X. Li and K. Pahlavan, M. Latva-aho, and M. Ylianttila, "Comparison of Indoor
Geolocation Methods in DSSS and OFDM Wireless LAN Systems', |IEEE
VTC'2000, Boston, Sep. 2000.

K. Pahlavan, X. Li, M. Ylianttila, R. Chana, and M. Latva-aho, "An Overview of
Wireless Indoor Geolocation Techniques and Systems', MWCN'2000, Paris, May
2000.

J. Beneat, K. Pahlavan, and P. Krishnamurthy, "Radio Channel Characterization
for Geolocation at 1 GHZ, 500MHZ, 90 MHZ, and 60 MHZ In SUO/SAS",
MILCOM99, Atlantic City, NJ, November 1999.

P. Krishnamurthy, and K. Pahlavan, "Distribution of Range Error and Radio
Channel Distribution of Range and Radio Channel Modeling for Indoor
Geolocation Applications’, |IEEE PIMRC'99 Osaka, Japan, September 12-15,
1999.

P. Krishnamurthy, J. Beneat, M. Marku, and K. Pahlavan, "Modeling of the
Wideband Indoor Radio Channel Geolocation Applications in Residential Areas”,
I[EEE VTC'99, July 1999.

P. Krishnamurthy, and K. Pahlavan, "Analysis of the Probability of Detecting the
DLOS Path for Geolocation Applications in Indoor Areas', IEEE VTC'99, July
1999.

P. Krishnamurthy, K. Pahlavan and J. Beneat, “Radio Propagation Modeling for
Indoor Geolocation Applications’, IEEE PIMRC'98 Boston, MA, September 8-
11, 1998.
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K. Pahlavan, "Emergence of the Location Aware LAN-PAN-HAN Industry”,
|EEE Workshop on Wireless LANs, Boston, MA, Sep. 27, 2001.

K. Pahlavan, "Trends in Indoor Geolocation”, SAAB Workshop on Short Range
Location System, Sweden, May 2000.

Theses Related to Indoor Geolocation Supervised by Prof. Pahlavan

“A Test-bed for Real-time Performance Evaluation of Indoor Geolocation
Systemsin Laboratory Environment”, Mohammad Heidari, MS. Thesis, May
2005.

“Performance of TOA Estimation Algorithmsin Different Indoor Multipath
Conditions’, Nayef Alsindi, MS. Thesis, May 2004.

“Measurement of TOA Using Frequency Domain Techniques for Indoor
Geolocation”, E. Zand, M.S. Thesis, WPI, May 2003.

“Super-resolution TOA estimation with diversity for indoor geolocation”, X. Li,
Ph.D. Thesis, May 2003.

“Voiceover IPinaWireless LAN Environment”, J. Feigin, MS Thesis, 2000.
“Time-Space Characteristics of Indoor Radio Channel”, R. Tingley, Ph. D.
Dissertation, 2000.

“Anaysis and Modeling of the Wideband Radio Channel for Indoor Geolocation
Applications’, P. Krishnamurthy, Ph. D. Dissertation, 1999.

“Using Ray-Tracing Techniquesin Site-Specific Statistical Modeling of Indoor
Radio Channels’, M. Hassan-Ali, Ph. D Dissertation, 1998.
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Center for
Wirdess | nformation
Network Studies

Electrical and Computer Engineering Department, Worcester Polytechnic Institute, Wor cester, MA 01609

Part |1:
Reprint of Selected Publications

In this part of the report we provide reprints of 14 selected and best-cited papers
coming out of the indoor geolocation research program at CWINS. These papers
are divided into three categories. Two tutorial papers in the IEEE
Communication Society Magazine in 1998 and 2002 provide an overview of the
indoor geolocation issues. The next category is six papers in channel
measurement and modeling related to indoor geolocation. These papers
describe measurements and models for the radio propagation parameters that
affect the performance of the wireless networks as well as models for distance
measurement errors observed in TOA based precision indoor geolocation
systems. The last section consists of six papers on algorithms, testbeds, and
performance of indoor geolocation systems. These six papers provide the basis
for performance evaluation of super-resolution signal processing algorithms as
well as a number of TOA based and RSS based indoor geolocation algorithms
based on the measurements and models describes in the papers of the previous
section. We start this part with a 15™ reprint describing CWINS. This paper was
published in the special issue of the ACM SIGMOBILE Mobile Computing and
Communication on worldwide research laboratories working in wireless
networking.
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Overview of CWINS

K. Pahlavan, “An overview of the center for wireless information
network studies at Worcester Polytechnic Institute, MA, USA,” ACM
S GMOBILE Mobile ~ Computing and Communications
Review, Volume 4, Issue 2, April 2000.
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Kaveh P;lhlavan, Director and&FounT.'ler CW A INMS

Professor, Electrical and Computer Engineering Department, WPI
kaveh@ece.wpi.edu
www.cwins.wpi.edu

The Center for Wireless Information Network Stud-
ies (CWINS) is a well renowned compact wireless
research laboratory with a successful history of re-
search alliances with other industrial and academic
groups. The center has performed research for gov-
ernment agencies and has close ties with the world-
leading organizations in the wireless industry. The
core competence of the center is in indoor radio chan-
nel propagation measurement modeling and in the de-
velopment of testbeds and tools for design and perfor-
mance monitoring of wireless indoor networks. For
over a decade, by publishing an international period-
ical journal, organizing several workshops and par-
ticipating in organizing a yearly international confer-
ence, the center has contributed significantly to infor-
mation exchange among important sectors of the wire-
less industry.

History

The research program in wireless information net-
works at WPI was established in 1985 as the first re-
search program of this sort in the United States. In
1986, the program was awarded the first NSF grant
in modern wireless communications to start pioneer-
ing work on channel modeling, transmission and mul-
tiple access methods for wireless indoor networks. In
1989 and 1990, the center participated in founding the
IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications (PIMRC) and the
IEEE International Symposium on Spread Spectrum
Techniques and Applications (ISSSTA) in the UK.
In 1991, the center organized the first IEEE Work-
shop on Wireless LANs, which was held at WPI. In
1992, the center organized the Third IEEE PIMRC
in Boston. In 1994, the center initiated the Interna-
tional Journal on Wireless Information Networks, the
first journal in this field. In 1995, Prof. Pahlavan
and Dr. Levesque published “Wireless Information
Networks”, John Wiley and Sons, the first graduate
level textbook in wireless networks. During 1996-98,
the Wireless LAN Research Laboratory was formed
under CWINS to serve as an industrial research al-
liance in answer to the growing interest in wireless
LAN technology. In 1996, Prof. Pahlavan was elected
Fellow of the IEEE for his contributions in wireless

office information networks. In 1997, the center ex-
panded the scope of research to perform pioneering
research for indoor and short-range goelocation appli-
cations for the Small Unit Operation Situation Aware-
ness System program under DARPA. Also in 1997,

the center initiated a long-term active collaboration

with the University of Oulu, Nokia, and several other
leading wireless companies in Finland.

C
Research Objectives and Directions

The main objective of the center is to perform basic
research in broadband wireless local access. The pi-
oneering research work in indoor radio propagation
measurements and modeling and developing experi-
mental testbeds and performance evaluation facilities
for comparative studies of evolving wireless indoor
networks is now finding its way into applications for
wireless home networking. The center strikes a bal-
ance between basic and applied research by maintain-
ing contacts with national and international research
organizations as well as leaders in the commercial in-

dustry.

Projects

The projects conducted at CWINS are focused on two
main areas of research: radio propagation and modem
design for physical layer, and traffic engineering and
performance monitoring of broadband indoor wireless
networks.

Radio propagation measurement and modeling at
CWINS started in 1986 with the development of a
wideband indoor radio channel measurement system
and time domain modeling of wideband indoor radio
propagation. Shortly after that, the center introduced
frequency domain modeling using a network analyzer
that since then has become a popular. method for in-
door radio propagation measurement. These efforts
were funded by NSF, HP and Raytheon. Later, the
center developed a spread spectrum channel sounder
for GTE Laboratories for performance monitoring of
urban cellular systems. More recently,  time-space
channel measurement characteristics of indoor radio
propagation have been studied at the center for smart
antenna and indoor geolocation applications.. In the
early 1990s a first 2-D ray-tracing program for radio
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propagation prediction in indoor areas was developed
and calibrated using the results of measurements ob-
tained in the earlier research. This program was ex-
tended to 3-D ray-tracing for microcellular applica-
tions in 1993. Results of these efforts have been used
by NYNEX Science and Technology, GTE Laborato-
ries, ERS, and more recently by DARPA’s SUO/SAS
project and United Technology Research Center. In
1996 the center developed an indoor deployment tool
for wireless LANs for the WLRL, a consortium of
five industrial partners. In 1994, CWINS started a
real-time channel simulation for indoor propagation
program using its own proprietary prototype. This
year, the center has received an award from DoD to
purchase the most advanced commercially available
real-time channel simulation hardware platform that
will be used to simulate all channel measurements
and modeling efforts of the previous years. The latest
contribution of the center to the research community
is the recognition of the fact that the exiting channel
models developed for telecommunication applications
are not suitable for performance evaluation of geolo-
cation systems operating in multipath environments.
Through a research program initiated by the DARPA’s
SUO/SAS program and later supported by Nokia, the
Finnish Airforce, and TEKES, the center has launched
a program for the measurement and modeling of the
indoor radio channel for geolocation applications.

Starting in 1986, CWINS performed theoretical
studies of wireless network access methods, capture
effects, voice and data integration, and performance
of WLANs. In 1993, with the support of NYNEX,
a benchmark software tool was developed to provide
real-time performance monitoring such as through-
put and time data of CDPD networks. In 1995, the
center was awarded a grant from NSF to deploy and
evaluate the performance of an experimental wireless
LAN tested. This unique subnet wireless LAN testbed
was designed to examine a variety of technologies
for point-to-point inter-LAN bridges as well as differ-
ent technologies used for mobile laptop applications.
This led to an experimental performance evaluation
of WLANs where throughput, delay and other char-
acteristics were measured taking into account the ef-
fects of walls, floors, and number of users. In 1996
with the support of WLRL, the CDPD benchmgtfk
tool was augmented to be used for WLANs. Using
this tool and HP Open View, HP Protocol Analyzer,
empirical data was collected and modeled. This en-
abled the center to lay a foundation for wireless traf-
fic engineering. In 1997, the center started a long-
term collaboration with the University of Oulu, Nokia

and other Finnish companies. The first project called
Wireless LANs for UMTS (WiLU) had a goal to eval-
uate inter-technology handoff requirements for the
third generation pan-European standard UMTS. The
work focused on developing handoff algorithms be-
tween WLANSs and GPRS. In 1999, a second project
called Wireless Indoor Geolocation and IP traffic anal-
ysis (WINGIP) had two main objectives. The first
objective was to investigate and model the perfor-
mance of voice applications over existing WLANs
and IP networks. A measurement system for voice
oriented applications was designed and used with the
NSF WLAN testbed to collect data, and a complete
OPNET simulation was created and checked against
measurements. The second objective was to investi-
gate the feasibility and performance of including ge-
olocation services over fourth generation wireless net-
works, in particular using OFDM in HIPERLAN?2.
In 1999, the center started investigating the area of
home networking, with particular interest in the Blue-
tooth, HomeRF, IEEE 802.11, a and b, IEEE 802.15
Wireless Personal Area Networks (WPAN), and other
wireless home networking initiatives.

Research Staff

The center is a compact and highly selective organi-
zation, the staff of the center includes two full-time,
three part-time, several contributing faculty members
and 5-10 graduate and undergraduate students. The
founder and director of CWINS is Kaveh Pahlavan,
Professor of Electrical and Computer Engineering and
Computer Science, WPI, and International Professor
of Electrical Engineering, University of Oulu, Fin-
land. Dr. Jacques Beneat is a full-time research sci-
entist at CWINS, mainly involved in radio propaga-
tion measurements and modeling and real-time chan-
nel simulation. Dr. Allen Levesque, is a Research Pro-
fessor in wireless communication systems, Dr. James
Mathews is a consultant in radio design, Craig Math-
ais of Farpoint Group, is a consultant in commercial
aspects of Wireless LANs. A number of ECE and CS
department faculty members at WPI have participated
in CWINS projects.

Sample list of publications

1. K. Pahlavan, et. al. "Handoff in Hybrid Mobile
Data Networks”, IEEE Personal Communication
Magazine, April 2000 (invited paper).

2. K. Pahlavan, P. Krishnamurthy, and J. Beneat,
“Wideband Radio Propagation Modeling for In-
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door Geolocation Applications”, IEEE Commu-
nications Magazine, April 1998 (invited paper).

3. K. Pahlavan, A. Zahedi, and P. Krishnamurthy,
”Wideband Local Access: WLAN and WATM”,
IEEE Communications Magazine, Special Series
on Wireless ATM, November 1997 (invited pa-

per).

4. A. Falsafi, K. Pahlavan, and G. Yang, “Trans-
mission Techniques for Wireless LANs”, IEEE
Journal on Selected Areas in Communications,
November 1996 (invited paper).

5. K. Pahlavan, T. H. Probert, and M. E. Chase,
"Trends in Local Wireless Networks”, IEEE
Communications Magazine, March 1995 (in-
vited paper).

6. K. Pahlavan and A. Levesque, "Wireless Data

Communication”, IEEE Proceedings, September

1994 (invited paper).

7. K. Pahlavan, S. Howard, and T. Sexton, ”Adap-
tive Equalization of Indoor Radio Channel”,

IEEE Transactions on Communications, January
1993.

8. S. J. Howard and K. Pahlavan, ”Autoregressive
Modeling of Wideband Indoor Radio Propaga-
tion”, IEEE Transactions on Communications,

" September 1992. ‘

9. K.Zhang and K. Pahlavan, ”An Integrated Voice-
Data System for Wireless Local Area Networks”,
IEEE Transactions on Vehicular Technology,
April 1990.

10. K. Pahlavan, "Wireless Office Information Net-
works”, IEEE Communications Magazine, June
1985 (A modified versionof this paper was pub-

lished in the ACM Transactions on Office Infor-

mation Systems, July 1988. It was also published
as the opening paper in ”Advances in Local and
Metropolitan Area Networks”, edited by William
Stalling, IEEE Press, 1994).

Facilities

The center has several radio channel measure-
ment systems suitable for indoor telecommunications,
smart antenna and geolocation applications over a

broad range of frequencies. The center has extensive

ray-tracing capabilities suitable for indoor, urban and
tunnel applications. The center is augmenting its real-
time channel simulation capabilities to be suitable for

indoor and urban telecommunication, smart antenna
and geolocation applications. '

The center has a complete experimental w1re1ess
LAN sub-network with router, switch, access points,
wireless inter-building bridges, and laptops with wire-
less adapter cards. It has proprietary and commercial
wireless network application monitoring tools suitable
for wireless traffic engineering and voice over IP stud-
ies. , / | o
There are extensive computer facilities in the
CWINS laboratory, the ECE department, and WPL
WPI is a member of the Internet 2 Consortlum

Sponsormg orgamzatlons v
The center has received support from government -
agencies such as the National Science Foundation and
DARPA, from the local industry such as GTE Lab-
oratories, TASC/Litton, Bell Atlantic Mobile, BBN,
Sierra Comm, Raytheon Company, DEC, and Alta
Group of Cadence, and from national industry such as
Savi Technologies (CA), Apple Computers (CA), Ra-
dio LAN (CA), Hewlett-Packard (CA), Motorola (IL),

* Texas Instruments (TX), and United Technologies Re-

search Center (CN). It has received support from in-
ternational agencies and industry such as Nokia (FI),
Elektrobit (FI), Sonera (FI), TEKES (FI), Finnish Air-
Force (FI), NTT (JAPAN), and Jolt (ISRAEL). The
companies that sponsored the WLRL alliance were
Aironet, Cushcraft, Harris Semiconductors, Persoft,
and DEC. The center has also provided corporate con-
sulting and training to several natlonal and interna-
tional companies.

Statement on Impact :

The research at the CWINS has resulted in more than
150 technical papers, several book chapters and the
text book Wireless Information Networks, the first
comprehensive text book published on modern WIN
systems. The research has resulted in over a-dozen
Ph. D. dissertations, numerous M.Sc. and extended
undergraduate senior projects. The students who com-
plete their graduate degrees learn multi-disciplinary
skills and teamwork practices in a fast-paced infor-
mation technology hungry environment that permits
them to move quickly and productively into the com-
petitive workplace. CWINS has enjoyed great suc-
cess in placement of -its graduates in start-up. com-
panies, academia, and corporations active in'the ex-
pansion of wireless information networks (such as
Qualcomm, Nokia, David Sarnoff Labs, Bellcore, -
Motorola, GTE Laboratories, Rockwell International,
PCSI, Raytheon, etc.).
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ABSTRACT

This article presents an overview of the techni-
cal aspects of the existing technologies for wire-
less indoor location systems. The two major
challenges for accurate location finding in indoor
areas are the complexity of radio propagation and
the ad hoc nature of the deployed infrastructure
in these areas. Because of these difficulties a vari-
ety of signaling techniques, overall system archi-
tectures, and location finding algorithms are
emerging for this application. This article pro-
vides a fundamental understanding of the issues
related to indoor geolocation science that are
needed for design and performance evaluation of
emerging indoor geolocation systems.

INTRODUCTION

Recently, there is increasing interest in accurate
location finding techniques and location-based
applications for indoor areas. The Global Position-
ing System (GPS) [1] and wireless enhanced 911
(E-911) services [2] also address the issue of loca-
tion finding. However, these technologies cannot
provide accurate indoor geolocation, which has its
own independent market and unique technical
challenges. In 1997, while engaged in the Defense
Advanced Research Projects Agency’s (DARPA’s)
Small Unit Operation/Situation Awareness System
(SUO/SAS) program, the lead author of this arti-
cle and his research group noticed the need for
fundamental research in accurate indoor geoloca-
tion [3]. The follow-up initiative of the group
attracted the attention of Nokia and other Finnish
organizations to the commercial importance of
indoor geolocation. In recognition of this impor-
tance, an NSF grant was awarded to establish a sci-
entific foundation in this field.

Accurate indoor geolocation is an important
and novel emerging technology for commercial,
public safety, and military applications [4]. In com-
mercial applications for residential and nursing
homes there is an increasing need for indoor
geolocation systems to track people with special
needs, the elderly, and children who are away from

visual supervision, to navigate the blind, to locate
in-demand portable equipment in hospitals, and to
find specific items in warehouses. In public safety
and military applications, indoor geolocation sys-
tems are needed to track inmates in prisons and
navigating policeman, fire fighters, and soldiers to
complete their missions inside buildings. These
incentives have initiated interest in modeling the
radio channel for indoor geolocation applications
[3, 5], development of new technologies [6], and
emergence of first-generation indoor geolocation
products [7]. To help the growth of this emerging
industry, there is a need to develop a scientific
framework to lay a foundation for design and per-
formance evaluation of such systems.

Figure 1 illustrates the functional block dia-
gram of a wireless geolocation system. The main
elements of the system are a number of location
sensing devices that measure metrics related to
the relative position of a mobile terminal (MT)
with respect to a known reference point (RP), a
positioning algorithm that processes metrics
reported by location sensing elements to esti-
mate the location coordinates of MT, and a dis-
play system that illustrates the location of the
MT to users. The location metrics may indicate
the approximate arrival direction of the signal or
the approximate distance between the MT and
RP. The angle of arrival (AOA) is the common
metric used in direction-based systems. The
received signal strength (RSS), carrier signal
phase of arrival (POA), and time of arrival
(TOA) of the received signal are the metrics
used for estimation of distance. As the measure-
ments of metrics become less reliable, the com-
plexity of the position algorithm increases. The
display system can simply show the coordinates
of the MT, or it may identify the relative loca-
tion of the MT in the layout of an area. This dis-
play system could be software residing in a
private PC or a mobile locating unit, locally
accessible software in a local area network
(LAN), or a universally accessible service on the
Web. Obviously, as the horizon of accessibility of
the information increases, design of the display
system becomes more complex.

0163-6804/02/$17.00 © 2002 IEEE
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There are two basic approaches to designing a
wireless geolocation system. The first approach is
to develop a signaling system and a network infra-
structure of location sensors focused primarily on
geolocation application. The second approach is to
use an existing wireless network infrastructure to
locate an MT. The advantage of the first approach
is that physical specification, and consequently
quality of the location sensing results, is under con-
trol of the designer. The MT can be designed as a
very small wearable tag or sticker, and the density
of the sensor infrastructure can be adjusted to the
required accuracy of the location finding applica-
tion. The advantage of the second approach is that
it avoids expensive and time-consuming deploy-
ment of infrastructure. These systems, however,
need to use more intelligent algorithms to compen-
sate for the low accuracy of the measured metrics.
Both approaches have their own markets, and
design work on both technologies has been pur-
sued in the past few years [2, 4, 7, 8].

To develop a scientific foundation, we need to
examine the performance of different signaling
techniques and geolocation approaches. This per-
formance evaluation needs a suitable model for
radio propagation that reflects the characteristics
of the channel affecting the accuracy of location
sensing and system positioning. In the next three
sections we address technical issues related to
channel modeling, location sensing, and position-
ing algorithms for indoor geolocation systems.

CHANNEL CHARACTERISTICS FOR
INDOOR GEOLOCATION

The indoor radio propagation channel is charac-
terized as site-specific, severe multipath, and low
probability for availability of a line of sight
(LOS) signal propagation path between the
transmitter and receiver [9]. The two major
sources of errors in the measurement of location
metrics in indoor environment are multipath
fading and no LOS (NLOS) conditions due to
shadow fading [3].

Radio propagation channel models are devel-
oped to provide a means to analyze the perfor-
mance of a wireless receiver. The performance
criteria for telecommunication and geolocation
systems are quite different [3]. The performance
criterion for telecommunication systems is the bit
error rate (BER) of the received data stream,
while for geolocation systems the performance
measure is the estimated accuracy of location
coordinates. The accuracy of location estimation
is a function of the accuracy of location metrics
and the complexity of positioning algorithms.
Since the metrics for geolocation applications are
AOA, RSS, and TOA, models for geolocation
application must reflect the effects of channel
behavior on the estimated value of these metrics
at the receiver. The existing narrowband indoor
radio channel models designed for telecommuni-
cation applications [9] can be used to analyze the
RSS for geolocation applications. The AOA part
of the emerging 3D channel models developed
for smart antenna applications [10, 11] might be
used for modeling of the AOA for indoor geolo-
cation applications. However, the existing wide-
band indoor multipath channel measurements
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M Figure 1. A functional block diagram of wireless geolocation systems.
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M Figure 2. The multipath profile of an indoor radio propagation channel.

and models [9] are not suitable for analysis of the
behavior of TOA for geolocation applications.
The existing statistical wideband indoor multi-
path models, such as the JTC model [9], repre-
sent multipath characteristics of the channel with
a discrete channel profile similar to the one
shown in Fig. 2. The strength and arrival time of
the paths are so determined that the root mean
square (RMS) delay spread and consequently
BER of a telecommunication receiver obtained
from the simulations using these profile repre-
sents values similar to those obtained from
empirical measurements. If these models are
used for performance evaluation of TOA-based
geolocation systems, the statistics of distance
errors do not reflect the results obtained from
empirical data [3]. Besides, to confirm the mod-
eling results of a radio channel, empirical mea-
surement is essential to check the validity of the
model. In the literature there are a number of
measurements of the wideband characteristics of
indoor radio channels for frequencies from 1 to
60 GHz [9]. However, none of these measure-
ments are useful for geolocation applications
because they do not have a well-calibrated esti-
mate of the arrival time of the direct LOS
(DLOS) path and a very accurate measurement
of the real physical distance between the trans-
mitter and receiver [12]. The only available short-
range measurements calibrated for geolocation
applications are those reported in [12], which are
used in this article to analyze the performance of
super-resolution techniques in the next section.
While we do not have any good models for
the multipath characteristics of indoor radio
channels for geolocation applications, there are
three classes of recent statistical modeling
approaches that can be used to develop reliable
models in the future, which are wideband 2D

IEEE Communications Magazine * February 2002

21



|
In indoor areas,

due to
obstruction by
walls, ceilings, or
other objects,
the DLOS
propagation path
is not always the
strongest path
and even in some
casess, for
example, NLOS,
it may not be
detectable with a
specific receiver
implementation.
In such cases,
dramatically large
errors occur in

TOA estimation.

multipath modeling [3, 5], 3D geometrical statis-
tical modeling [10], and 3D measurement-based
statistical modeling [11]. In measurement-based
2D statistical modeling, the measurement data
are used to define a multipath profile by

L,-1
W)= ogd(t—14), (1)

k=0

where L, is the number of multipath components,
and o = | oy | /% and 1 are complex ampli-
tude and propagation delay of the kth path,
respectively. The strength and statistical charac-
teristics of the first path and its relative strength
with respect to other paths fit similar results
obtained from empirical data. The measurement
systems for this approach are the same as those
used for telecommunication applications [7, 9].
However, these systems are calibrated for accu-
rate measurement of the TOA of the DLOS, and
for each measurement the physical distance
between the transmitter and receiver is accurately
recorded. Preliminary measurement and model-
ing work in this field is reported in [5, 12]; larger
calibrated measurement databases and more
practical multipath models need further investiga-
tion.

In 3D modeling, the mathematical model for
the channels is represented by

L,-1
h1,0)= Y 08(T—14,0-6;), 2)
k=0

where 6, is the AOA of the kth path [11]. While
in 2D modeling each path was associated with a
TOA, in 3D modeling each path is associated with
a TOA and an AOA. The 3D models can be
developed either based on geometric analysis of
the statistics of the paths arriving from different
directions or out of empirical 3D channel mea-
surement data. The 3D geometrical statistical
models, developed for smart antenna applications,
use an analytical approach to relate propagation
parameters to the structure of scattering in the
environment [10]. In this approach, a mathemati-
cal description of radio propagation based on sta-
tistical building features and a geometric optics
approximation of Maxwell’s equations are
employed to derive relevant radio propagation
models such as distributions of the TOA, AOA,
and RSS. The statistics of the AOA and RSS in
these models can be used directly for indoor
geolocation applications. Further research in this
area is needed to develop statistical models for the
TOA of the DLOS path and its relation to other
paths to make them useful for the analysis of posi-
tioning errors in TOA-based geolocation systems.
In 3D measurement-based statistical model-
ing, measured channel characteristics are used to
develop models for AOA, TOA, and RSS. The
major challenge of this approach is the imple-
mentation of a system to measure the 3D charac-
teristics of the channel. Recently two techniques
have been studied for this purpose. The first
technique mechanically rotates a directional
antenna to measure the strength of the signal
arriving from different directions, and the second
technique measures a set of eight channel

impulse responses using an antenna array and
calculates the AOA using signal processing tech-
niques [11]. Preliminary 3D modeling of an
indoor area using a limited database in a building
is available in [11]. More extensive measurement
and modeling in this field can result in realistic
models for indoor geolocation applications.

LOCATION SENSING TECHNIQUES

As discussed in the introduction, the location sens-
ing elements measure RSS, AOA, and TOA as
location metrics. The indoor radio channel suffers
from severe multipath propagation and heavy
shadow fading, so the measurements of RSS and
AOA provide less accurate metrics than does TOA
[4]. As a result, similar to GPS systems, indepen-
dent systems designed for indoor geolocation nor-
mally employ the more accurate TOA as the
location metric. Systems using existing infrastruc-
tures installed for wireless LANs or the third-gen-
eration (3G) indoor systems may use RSS, AOA,
or less accurate TOA measurements to fully exploit
the existing hardware implementation designed for
traditional telecommunication applications [8]. In
indoor areas, due to obstruction by walls, ceilings,
or other objects, the DLOS propagation path is
not always the strongest; in some cases (e.g.,
NLOS), it may not even be detectable with a spe-
cific receiver implementation [3]. In such cases,
dramatically large errors occur in TOA estimation.
To accurately estimate the TOA in indoor areas,
we need to resort to different and more complex
signaling formats, frequency of operation, and sig-
nal processing techniques that can resolve the
problems. The following subsection is devoted to
accurate TOA estimation techniques.

ESTIMATION OF TOA FOR INDOOR RANGING

The TOA-based systems measure distance based
on an estimate of signal propagation delay (i.e.,
TOA) between a transmitter and a receiver since
in free space or air, radio signals travel at the
constant speed of light. The TOA can be mea-
sured by either measuring the phase of received
narrowband carrier signal or directly measuring
the arrival time of a wideband narrow pulse. The
wideband pulses for measuring TOA can be gen-
erated either directly [6] or using spread spec-
trum technology [7]. In the following, we present
these techniques in three classes: narrowband,
wideband, and ultra wideband techniques.

Narrowband Signals and Phase Measure-
ment Systems — In the narrowband ranging
technique, the phase difference between received
and transmitted carrier signals is used to measure
the distance between two points. The phase of a
received carrier signal, ¢, and the TOA of the sig-
nal, T, are related by T = ¢/w., where , is the car-
rier frequency in radian. It is well known that the
differential GPS (DGPS) using measured refer-
ence carrier phase at the receiver improves the
location accuracy of the traditional GPS from
about 20 m to within 1m [1]. However, unlike the
DGPS, where the DLOS signal path is always pre-
sent, the severe multipath condition of the indoor
geolocation environment causes substantial errors
in phase measurements. When a narrowband car-
rier signal is transmitted in a multipath environ-
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ment, the composite received carrier signal is the
sum of a number of carriers, arriving along differ-
ent paths, of the same frequency but different
amplitude and phase. The frequency of the com-
posite received signal remains unchanged, but the
phase will be different from that of the DLOS sig-
nal [9]. An immediate conclusion is that phase-
based distance measurement using a narrowband
carrier signal cannot provide accurate estimate of
distance in a heavy multipath environment.

Wideband Signals and Superresolution Tech-
niques — The direct-sequence spread-spectrum
(DSSS) wideband signal has been used in ranging
systems for many years [1]. In such a system, a sig-
nal coded by a known pseudo-noise (PN) sequence
is transmitted by a transmitter. Then a receiver
cross-correlates received signal with a locally gen-
erated PN sequence using a sliding correlator or a
matched filter [7, 9]. The distance between the
transmitter and receiver is determined from the
arrival time of the first correlation peak. Because
of the processing gain of the correlation process at
the receiver, the DSSS ranging systems perform
much better than competing systems in suppress-
ing interference from other radio systems operat-
ing in the same frequency band. In single-path
radio propagation channels, only disturbed by
additive white Gaussian noise, the Cramer-Rao
lower bound is commonly used for performance
assessment of cross-correlation-based TOA esti-
mation techniques. However, due to the complexi-
ty of multipath indoor radio propagation channels,
such a bound is not directly applicable to indoor
geolocation systems. Instead, the resolution of
TOA estimation in DSSS ranging systems is rough-
ly determined by the base width of the PN correla-
tion function, or equivalently the signal bandwidth
[7]. For example, if a bandwidth of 200 MHz is
used, the absolute distance estimation errors are
less than 1.5 m if the DLOS signal is detectable.

Due to the scarcity of the available band-
width in practice, in some indoor geolocation
applications, the DSSS ranging systems cannot
provide adequate accuracy. On the other hand,
it is always desirable to achieve higher ranging
accuracy using the same bandwidth. Inspired by
high-resolution spectrum estimation techniques,
a number of researchers have studied super-res-
olution techniques for time-domain analysis such
as [13]. A frequency-domain superresolution
technique can be used to determine the TOA
with high resolution from frequency channel
response. In practice, discrete samples of fre-
quency channel response can be obtained by
sweeping the channel at different frequencies
[9], by taking advantage of an existing multicarri-
er (orthogonal frequency-division multiplexing,
OFDM) communication system, or in a DSSS
system by deconvolving received signal over the
frequency band of high signal-to-noise ratio [13].

To understand the concept of frequency-
domain super-resolution technique, we take the
Fourier transform of Eq. 1 so that the frequency
channel response is obtained as

L,-1 .
H(f)= 3, oxe 2%,
k=0
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M Figure 3. Estimated TOA of the DLOS path and normalized time domain
responses obtained using three different techniques. The vertical dash-dot line
denotes the expected TOA. The x-axis is delay in ns.

If we exchange the role of time and frequency
variables in Eq. 3, we observe that it becomes the
harmonic signal model, which is well known in the
spectrum estimation literature. Therefore, all
spectrum estimation techniques used for harmonic
signal models can be applied to frequency domain
measurement data of radio propagation channel
to determine the delay of multipath signals.

In order to demonstrate the usefulness of the
super-resolution technique we compare its per-
formance based on measured indoor channel
characteristics reported in [12] with two other
time delay estimation techniques. The MUSIC
algorithm is used as an example of super-resolu-
tion techniques. In the first of these, the fre-
quency domain channel response is directly
converted to the time domain using inverse
Fourier transform (IFT) [9], and then the arrival
time of the DLOS is detected. The second tech-
nique uses the traditional cross-correlation tech-
niques with DSSS signals (DSSS/xcorr). Figure
3 shows simulation results using the three tech-
niques over sample channel measurement data.
We observe that the MUSIC algorithm shows
much higher time domain resolution than the
other two and accurately detects the arrival time
of the DLOS path, while the other two fail. Fig-
ure 4a presents mean and standard deviation of
ranging errors vs. the bandwidth of the system
over channel measurement data in several differ-
ent buildings reported in [12]. Figure 4b presents
percentage of measurement locations where
absolute ranging errors are smaller than 3 m. In
general, the superresolution technique has the
best performance and is preferred, especially
when the signal bandwidth is small. It should be
noted that while using the superresolution tech-
nique and large bandwidth improves statistical
performance, it couldn’t eliminate large ranging
errors at some locations because of NLOS con-
ditions between transmitter and receiver. This
needs to be dealt with in the positioning process
to achieve high positional accuracy, as presented
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in the next section. Using the superresolution
technique increases the complexity of system
implementation, and there are a number of
issues in practical implementation that need to
be further investigated. More details of this
study will be available in a separate publication.

The Ultra Wideband Approach — As men-
tioned before, signal bandwidth is one of the key
factors that affect TOA estimation accuracy in
multipath propagation environments. The larger
the bandwidth, the higher the ranging accuracy.
Ultra wideband (UWB) systems, which exploit
bandwidths in excess of 1 GHz, have attracted
considerable attention as a means of measuring
accurate TOA for indoor geolocation applications
[6]. Due to the high attenuation associated with
the use of a high-frequency carrier, the frequency
band considered for a UWB system is typically
focused on 2-3 GHz unlicensed. With results of
propagation measurement in a typical modern
office building, it has been shown that the UWB
signal does not suffer multipath fading [14], which
is desirable for accurate TOA estimation in indoor
areas. The actual deployment of UWB systems in
the United States is subject to FCC approval,
which was due in late 2001. The main concern of
the FCC authorities is the interference of UWB
devices with, among other licensed services, the
GPS systems that operate at approximately the 1.5
GHz frequency band. Similar to the spread spec-
trum signals, the UWB signal has a low, flat, and
noise-like power spectrum. But given the weak
satellite signals that must be processed by GPS
receivers, the noise-like UWB signal is still harm-
ful for GPS systems in close vicinity. A significant
amount of research work is underway to assess the
effect of UWB interference on GPS receivers.

POSITIONING ALGORITHMS

As discussed earlier, the measurement accuracy of
location metrics in indoor areas depends on loca-
tion sensing technologies and site-specific indoor

radio propagation conditions. Due to imperfect
implementation of location sensing techniques,
lack of bandwidth, and the complexity of the mul-
tipath indoor radio propagation channel among
others, there are always varying errors associated
with measurements of location metrics. To achieve
high positional accuracy when the measurements
of location metrics are unreliable, the errors
encountered in the measurement process have to
be mitigated in the positioning process. In the next
two subsections we discuss the traditional position-
ing algorithms used with reliable measurements of
location metrics and more intelligent pattern
recognition techniques that can be used to
improve the positioning performance when the
measurements of location metrics are unreliable.

TRADITIONAL TECHNIQUES

In the indoor radio channel, it is difficult to
accurately measure AOA, POA and RSS so that
most of the independent indoor positioning sys-
tems mainly use TOA based techniques. With
reliable TOA-based distance measurements, Sim-
ple geometrical triangulation methods can be
used to find the location of the MT [2, 4]. Due
to estimation errors of distances at RP receivers
caused by inaccurate TOA measurement, the
geometrical triangulation technique can only
provide a region of uncertainty, instead of a sin-
gle position fix, for estimated location of the
MT. To obtain an estimate of location coordi-
nates in the presence of measurement errors of
location metrics, a variety of direct and iterative
statistical positioning algorithms have been
developed to solve the problem by formulating it
into a set of nonlinear equations [2].

In some indoor geolocation applications, the
purpose of positioning systems is to provide a
visualization of possible mobile locations instead
of an estimate of location coordinates [7]. On
the other hand, positional accuracy is not con-
stant across the area of coverage, and poor
geometry of relative position of MT and RP can
lead to high geometric dilution of precision [15].
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The output of statistical methods is an estimate
of mobile location coordinates, and the changes
of the shape of the region of uncertainty are not
revealed by this method. When the region of
uncertainty information as well as the estimate
of location is needed, both geometric and statis-
tical triangulation algorithms are used [15].

For traditional outdoor geolocation, intelligent
techniques, such as Kalman filter-based tech-
niques for tracking and fusion of multiple metrics,
are normally used to improve positioning perfor-
mance [1]. In essence, these techniques are readi-
ly applicable to indoor geolocation systems.
However, the indoor application environment has
some unique features, discussed in the next sec-
tion, which make the traditional positioning algo-
rithms less attractive. On the other hand, these
unique features of indoor applications enable the
design of intelligent positioning algorithms that
can significantly improve the positioning perfor-
mance in indoor areas.

PATTERN RECOGNITION TECHNIQUES

For indoor geolocation applications, the service
area is restricted to inside and the close vicinity of
a building, and nowadays the building floor plan is
normally accessible as an electronic document.
The availability of electronic building floor plans is
one of the features of indoor applications that can
be exploited in positioning algorithms. For exam-
ple, while tracking an MT in a building, with the
aid of a building floor plan situations involving
crossing walls or jumping through floors can easily
be identified and eliminated. Another unique fea-
ture of indoor applications is that the size of the
coverage area is much smaller than outdoor appli-
cations. This makes it possible to conduct compre-
hensive planning of the placement of sensors.
Careful planning of a sensor network can signifi-
cantly reduce measurement errors of location met-
rics caused by NLOS propagation. The structural
information of the sensor network can also be
employed in intelligent positioning algorithms sim-
ilar to the use of building floor plans. The small
coverage of the system also makes it possible to
conveniently conduct extensive premeasurement
in the areas of interest. As a result, the premea-
surement-based location pattern recognition (also
called location fingerprinting) technique is gaining
increasing attention for indoor applications [8].
On the other hand, in most indoor applications,
such as finding needed equipment or locating
patients in critical condition, the MT is used in a
quasi-stationary way. For these situations, pattern
recognition work better than traditional triangula-
tion techniques and Kalman filter-based tracking
techniques.

The basic operation of pattern recognition
positioning algorithms is simple. Each building
has unique signal propagation characteristics;
each spot in a building would have a unique sig-
nature in terms of RSS, TOA, and/or AOA,
observed from different sensors in the building. A
pattern recognition system determines the unique
pattern features (i.e., the location signature) of
the area of interest in a training process, and then
this knowledge is used to develop rules for recog-
nition. The challenge for such algorithms is to dis-
tinguish locations with similar signatures. To build
the signature database, a terminal is carried
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M Figure 5. Partial layout of the TLab and CWC, University of Oulu, as well as

the locations of the four 802.11b APs and the measurement points.

through the service area transmitting signals to a
monitoring site through all location sensing ele-
ments. The service area is divided into nonover-
lapping zones or grids, and the algorithm analyzes
the received signal patterns and compiles a unique
signature for each zone.

For quasi-stationary applications, the simplest
way of pattern recognition is the nearest-neighbor
method. In this method the Euclidean distance
measure is calculated between the measured met-
rics, RSS, TOA, and/or AOA, and all entities in
the signature database. The location estimate is
determined to be the one associated with the
minimum Euclidean distance [8]. A simple experi-
ment has been conducted to demonstrate the use-
fulness of this technique. Figure 5 presents a
partial layout of the Telecommunications Labora-
tory (TLab) and the Center for Wireless Commu-
nications (CWC) at the University of Oulu,
Finland. The locations of four 802.11b access
points (APs) and 31 measurement locations along
a long corridor, with about 2 m separation
between adjacent points, are illustrated in the fig-
ure. An MT is carried along the corridor, and the
RSS is measured at each location. Figure 6 shows
the measured RSS at all four APs as the terminal
travels from the right corner close to AP-I to the
end of the vertical corridor after AP-IV. Then the
nearest-neighbor pattern recognition method is
applied to the measurement data. In this experi-
ment the standard deviation of the positioning
error was 2.4 m, and at about 80 percent locations
the positional error was less than 3 m. Similar
results in a different building are available in [8].

When the area of coverage becomes large and
a large number of sensors are involved, the size of
the location signature database increases dramati-
cally, which makes the use of simple nearest-neigh-
bor pattern recognition computationally
cumbersome. More complex algorithms, including
fuzzy logic, neural network, subspace techniques,
and hidden Markov model-based techniques
among others, are being investigated to reduce
overall computational complexity and improve per-
formance. When the 3G systems using spread
spectrum signals and RAKE receivers are
employed for indoor geolocation, it is possible to
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use the measured time and signal strength of all
fingers in place of RSS to improve the positioning
performance.

CONCLUSIONS

Indoor geolocation is an emerging technology
that needs a scientific foundation. To provide
such a foundation we need to characterize the
radio propagation features that impact the per-
formance of the indoor geolocation systems. Two
classes of indoor geolocation systems are emerg-
ing. The first class has its own infrastructure, uses
reliable TOA measurement using wideband,
superresolution, or UWB location sensing
approaches, and employs triangulation tech-
niques for positioning. The second class uses the
existing infrastructure of a wireless system (a
wireless LAN or cellular system), more unreli-
able metrics, premeasurement data, and pattern
recognition algorithms. The challenge for TOA-
based systems is to develop a signaling system
and infrastructure that is inexpensive to design
and deploy, complies with frequency regulations,
and provides a comprehensive coverage for accu-
rate ranging. Even though building and updating
the signature database are much easier in indoor
environments than in wide urban areas, the major
drawback of pattern recognition techniques still
lies in substantial efforts needed in generation
and maintenance of the signature database in
view of the fact that the working environment
changes constantly. In general, both techniques
demonstrate promising positioning performance
for the emerging indoor geolocation applications.
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Wideband Radio Propagation Modeling
for Indoor Geolocation Applications

Kaveh Pahlavan, Prashant Krishnamurthy, and Jacques Beneat

Worcester Polytechnic Institute

A A framework for statistical modeling of the wideband character-
BSTRACT istics of the frequency-selective fading multipath indoor radio
channel for geolocation applications is presented. Multipath characteristics of the channel

are divided into three classes according to availability and the strength of the direct line of
sight (DLOS) path with respect to the other paths. Statistics of the error in estimating the

time of arrival of the DLOS path in a building is related to the receiver’s sensitivity and
dynamic range. The effects of external walls on estimating the location of the DLOS path

are analyzed.

I ndoor radio channels suffer from extremely seri-
ous multipath conditions that have to be mod-
eled and analyzed to enable the design of radio equipment
for a variety of applications. The objective of wideband radio
propagation modeling for telecommunications and geoloca-
tion applications are quite different. As a result, available
models for radio channel propagation are not adequate for
analyzing the performance of geolocation systems. In radio
propagation studies for telecommunication applications, the
main objective is to determine the relationship between dis-
tance and total received power in all paths, and to find out
the multipath delay spread of the channel. The distance-
power relationship is used to determine the coverage of the
radio and the multipath delay spread to evaluate the data
rate limitations of the receivers [1]. The objective of radio
propagation studies for geolocation applications is to deter-
mine the relative power and time of arrival (TOA) of the
signal arriving from the direct line of sight (DLOS) path ver-
sus the signal arriving from other paths. The relative power
and TOA of the paths, and the channel noise and interfer-
ence are used to analyze the error in estimating the distance
between the transmitter and the receiver if the DLOS path is
not detected correctly.

With the increased popularity of wireless services in the
1990s new applications in a variety of fields have evolved.
These applications were incentives for radio propagation mea-
surement and modeling in indoor and outdoor areas. In the
telecommunications industry, indoor radio propagation stud-
ies were motivated by voice-oriented wireless private branch
exchange (PBX) and personal communications services (PCS)
applications as well as data-oriented wireless LANs and wire-
less ATM services [2]. Wideband radio propagation studies
were more focused on wideband data applications such as
LAN extension, inter-LAN bridges, nomadic access, ad hoc
networking, and fusion of computers and communications [3].
Research in wideband indoor radio channel modeling for
telecommunications applications in the past decade resulted
in numerous measurements, statistical models, and ray tracing
software to identify the wideband characteristics of different
classes of buildings such as factory floors, office buildings, and
residential houses [1].

More recently, applications for indoor geolocation are
becoming popular [4]. In mental hospitals and jails there is a
growing need to identify the location of specific patients or
inmates. In warehouses, laboratories, and hospitals there is a

need to identify the location of
portable and in-demand pieces of
equipment. Public safety departments
are thinking of identifying the location
of people at the site of a crime or acci-
dent [5-7]. Fire department officers are keen on identifying
the locations of victims of accidents and firefighters inside a
building. Small unit operation (SUQO) military teams are
keen on situation awareness systems (SASs) capable of iden-
tifying the location of individual warfighter systems (IWSs)
inside buildings [8]. Quantitative study of the feasibility of
alternative indoor geolocation systems for these applications
requires measurement and modeling of the indoor radio
channel to predict and analyze the availability of the DLOS
path in different parts of a building. In the same way that
the bit error rate (BER) is the ultimate measure for compar-
ing performance of different digital communication receivers,
accuracy of measurement of the TOA of the DLOS path is a
measure of the performance of geolocation receivers. In this
article we provide a new framework to model the radio
propagation characteristics for analysis of the TOA of the
DLOS path.

THREE CLASSES OF LOCATIONS

In wideband indoor radio propagation studies for telecom-
munication applications often channel profiles measured in
different locations of a building are divided into line of sight
and obstructed line of sight because the behavior of the
channel in these two classes has substantially different
impacts on the performance of a telecommunications system.
A logical way to classify channel profiles for geolocation
applications is to divide them into three categories. The first
category is the dominant direct path (DDP) case, in which
the DLOS path is detected by the measurement system and
is the strongest path in the channel profile. In this case, tra-
ditional GPS (Global Positioning System) receivers [9-11]
can lock onto the DLOS path and detect its TOA accurately.
The second category is the nondominant direct path (NDDP)
case, where the DLOS path is detected by the measurement
system but is not the dominant path in the channel profile.
For these profiles traditional GPS receivers, expected to lock
onto the strongest path, will make an erroneous decision on
the TOA. The amount of error made by a traditional receiv-
er is the distance associated with the difference between the
TOA of the strongest path and the TOA of the DLOS path.
For the second category, locations with NDDP profiles, a
more complex RAKE type receiver [1] can resolve the multi-
path and make an intelligent decision on the TOA of the
DLOS path. The third category of channel profiles are unde-
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M Figure 1. Three classes of channel profiles: a) DDP, b) NDDP, and c) UDP.

tected direct path (UDP) profiles. In these profiles the mea-
surement system cannot detect the DLOS path, and there-
fore neither traditional GPS nor RAKE-type receivers can
detect the DLOS path. If we define the ratio of the power of
the strongest path to the power of the weakest detectable
path of a profile as the dynamic range of a receiver, in
NDDP profiles the strength of the DLOS path is within the
dynamic range of the receiver, and in UDP profiles it is not.
If practical considerations regarding the dynamic range are
neglected, one can argue that we have only two classes
(DDP and NDDP) of profiles because the DLOS path
always exists, but sometimes we cannot detect it with a prac-
tical system.

DESCRIPTION OF THE MIEEASUREMENTS

The measurement system we have used is the frequency
domain measurement system described in [12]. The center-
piece of this system is a network analyzer that sweeps the
channel from 900-1100 MHz. The output signal is first
amplified with a 27 dBm amplifier and then connected to
the transmitter antenna by a long cable. The receiver anten-
na passes the signal through a chain of low-noise amplifiers
that are connected to the input port of the network analyz-
er. The network analyzer records the frequency response of
the channel and, by taking the Fourier transform, provides
the impulse response we refer to as a channel time profile or
simply profile. The sensitivity of the

with results of RT for the particular application. From that
point onward, we use results of RT for massive simulations
to draw reasonable statistical conclusions [1, 14, 16]. For
telecommunications applications we are interested in the
total received power and root mean square (rms) multipath
delay spread of the channel. For geolocation applications
we have included adequate details of the building to match
the power of the DLOS path and to an extent the power in
the remaining paths.

Figure 1 shows samples for the three classes of profiles
obtained from RT and the measurement system on the
first floor of the Atwater Kent (AK) Laboratories at
Worcester Polytechnic Institute. The floor plan of this
building and the location of the transmitter and receivers
are shown in Fig. 2.

In the DDP case the transmitter and receiver are in the
same area, in the NDDP case a couple of walls separate
them, and in the UDP case several walls are between them.
As shown in Fig. 1, results of measurement and RT show
close agreement in the DDP and NDDP cases. The DLOS
path is within 2—4 dB, the range of variations of the paths is
within a few dB, and the arriving paths from RT have a rea-
sonable match to the result of measurements. For the UDP
case RT accurately predicts the lack of the DLOS path, and
the dynamic range is within a few dB, but the rest of the
paths follow less accurately compared to the other two cases.
As we mentioned earlier, these differences are caused by

effects of movement and other

network analyzer is —80 dBm. Run-

details not included in the RT pro-

ning massive simulations requires 20
exhaustive results from the mea-
surement system, which is extreme- 80

gram. However, in geolocation
applications we are mainly con-
cerned with statistical behavior of

ly expensive. To avoid this

the DLOS path and the dynamic

range of the signal. For these pur-
poses RT proves to be a reliable
tool for modeling.

STATISTICAL BEHAVIOR OF
THE CHANNEL

To investigate the statistical

difficulty, we use the CWINS ray 70 f

tracing (RT) software described in I

[13-15] to draw our statistical con- T

clusions. Recently, RT has also 50 |

been used for development of

wideband statistical models for 40 |

indoor telecommunications appli-

cations [15]. In general, all the 30 ¢

details of building and furniture as

well as movement of people are 20 30 40 50

not included in any RT programs. L

behavior of the strength of the

90 100 S ,
DLOS path, RT simulations were

70 80

We increase details of the building
to the extent that results of empiri-
cal data from the measurement

system at selected points agree shown in Fig. 1.

M Figure 2. Location of the indoor and outdoor
transmitters (small squares) and receivers (X)
for the sample measurements and ray tracing

performed for 1600 receiver loca-
tions in a grid covering the first
floor of the AK Laboratories, the
floor plan of which is shown in
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M Figure 4. Received power as a function of distance in the AK
Laboratories first floor for the indoor transmitter location
shown in Fig. 2.

Fig. 2. The transmitter is located at the center of the
building, and the receiver is moved to different points on
the grid. The AK building was built in 1906 and had two
major remodelings and additions in 1934 and 1981. There-
fore, in some areas within the building we have more than
one exterior-type wall. The exterior walls of this building
are heavy brick, the interior walls are made of aluminum
stud and sheet rock, the floors are made with metallic
beams, the doors and windows are metallic, and many
other metallic objects (such as relatively large electric
motors, equipment, and vending machines) are spread
over different laboratory areas and corridors of the first
floor. The excessive number of metallic objects and heavy
and multiple external walls makes this building a very
harsh environment for radio propagation.

Figure 3 shows the classes of channel profiles obtained in
different locations of the building. The red, green, and blue
areas correspond to the DDP, NDDP, and UDP profiles,
respectively. As we discussed earlier, in the red areas tradi-
tional geolocation systems work properly, in the green areas
more complicated RAKE type receivers are needed to accu-
rately extract the TOA of the DLOS path, and in the blue
areas we need additional transmitters to measure the distance
accurately. The reader should be reminded that in practice a
geolocation system involves at least three transmitters spread
over opportunistically selected locations in the building. This
figure provides an intuitive understanding of the range of
operation of one reference transmitter operating inside a
harsh indoor environment.

We next examine the strength of the DLOS path com-
pared to the combined strength of all other paths and the
total received power, including the power in the DLOS path.
Figure 4 shows the received power (in dBm) versus distance
for the DLOS path, all other paths combined, and total power
for all locations of the floor plan. The vertical lines on the
curves correspond to the one standard deviation of the
received signal strength for that distance.

Over a distance of 45 m in this building, the range of
received power in the DLOS path is around 75 dB, while the
range of received power in combined other paths and total
received power is around 40 dB. The range of received power
in the DLOS path is noticeably larger than that of the other
paths combined and total received power. An immediate con-
clusion from this observation is that the receivers designed for
geolocation applications in a frequency-selective fading multi-
path environment should accommodate wider dynamic ranges
for the received signal power.
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EFFECTS OF RECEIVER DESIGN

The main objective of a geolocation radio receiver is to
detect the TOA of the DLOS path. The DLOS path always
exists, but in practice for a given receiver sensitivity, dynamic
range, and bandwidth, we cannot correctly measure the TOA
of the DLOS path all the time. Assuming that the bandwidth
is sufficiently large to resolve all the paths, if a receiver can-
not detect the DLOS path it will assume that the first detect-
ed path is the DLOS path, and will make an erroneous
decision on estimating the TOA. This error can easily be
mapped to the error in measuring the distance between the
transmitter and receiver. To further analyze the behavior of
the channel for geolocation applications we look at the
effects of sensitivity and dynamic range of a wideband
receiver on the probability of detection of the DLOS path
and the cumulative distribution function (CDF) of the error
in measurement of the distance between the transmitter and
receiver.

Detection of the TOA is a function of multipath struc-
ture, receiver specification, signal-to-noise ratio, and the
algorithm used to detect the DLOS path. We assume a wide-
band RAKE-type receiver capable of resolving the entire
multipath profile of the channel. This receiver declares the
TOA of the first detected path as the TOA of the DLOS
path. We identify this receiver by its sensitivity and dynamic
range. Sensitivity provides the minimum power level of a
path that can be detected. Dynamic range provides the dif-
ference in dB between the strongest and weakest detectable
paths. For example, when assuming a sensitivity of -80 dBm
and a dynamic range of 15 dB, the DLOS path is detectable
if its power is stronger than —80 dBm and is not more than
15 dB below the power of the strongest path. If these two
conditions are not satisfied, the receiver detects the first
available path that fits this condition. When the receiver
detects another path the difference between the distances
measured based on the TOA of the erroneously detected
path and the TOA of the DLOS path is considered as the
error in detection.

Figure 5a shows the CDF of the distance error as a func-
tion of receiver sensitivity for a fixed dynamic range of 40
dB, using the same locations described in Fig. 3. A change in
receiver sensitivity from —-80 dBm to —100 dBm will change
the probability of correct detection of the DLOS path from
86 to 92 percent. The majority of errors occur for shorter
distances, for example, a receiver with —100 dBm sensitivity
makes an error of less than 2 m 95 percent of the time,
although, with a low probability, the receiver may make
errors up to 30 m. The larger errors belong to cases where
several walls separate the transmitter and receiver. In these
cases, often the overall received signal is extremely weak and
all paths arrive after several reflections and transmissions
through the walls. Again, the reader should note that the
errors in Fig. 5 are the errors of a single receiver and not the
error of the geolocation system. Practical geolocation sys-
tems usually provide redundancies by installing additional
reference transmitters and use intelligent algorithms to avoid
erroneously reported distances [11]. As a result, the system
error can be reduced so that it is significantly less than the
error of each individual receiver. When the overall architec-
ture of the geolocation system is specified, statistics provided
in Fig. 5 can be used to analyze and determine the actual
error of the system.

In the implementation of a receiver, the dynamic range
is related to the sidelobes of the pulses that are used for
measurement of the TOA. For example, if Nyquist pulses
are used, the sidelobes are about 13 dB below the main
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B Figure 6. Received power as a function of distance in AK Labora-
tories first floor for the outdoor transmitter location shown in Fig. 2.

peak. Therefore, if a path is more than 13 dB below the
strongest path it cannot be detected, and the dynamic
range of this receiver is 13 dB. Using Hanning or other
low-sidelobe pulses, we can increase the dynamic range to
more than 40 dB. Figure 5b shows the effects of the receiv-
er dynamic range on the CDF of the distance error in
meters for a receiver with a sensitivity of -80 dBm. A
change in dynamic range from 38 dB to 13 dB will reduce
the probability of detection of the DLOS path from 86 to
78 percent. For a dynamic range of 13 dB, in more than 90
percent of locations the error in measuring the distance is
less than 5 m. Analysis of this sort is useful for receiver
designers to evaluate the trade-off among different pulse
shapes and relate them to the overall performance of the
geolocation system.

EFFECTS OF EXTERNAL WALLS

So far in this article, we have analyzed characteristics of
the radio channel for indoor-to-indoor applications, such as
geolocation systems for hospitals or manufacturing floors,
where the reference transmitters are installed inside the
building. There are other indoor applications for which the
reference transmitters must be located outside the building.
For example, in a military or firefighting operation a
warfighter or firefighter could be inside the building while
the rest of the troops are outside in nearby locations
around the building. In these situations it is expected that
the reference transmitters will be located outside the build-
ing near the external walls while the receiver is inside the
building.

When we move the transmitter outside the building,
characteristics of radio propagation change significantly [1].
This abrupt change of propagation characteristics is caused
due to two major reasons: excessive indoor penetration loss
through external walls of the building, and additional paths
arriving through windows and doors reflected from neigh-
boring buildings. External walls are usually thicker load-
bearing walls made of heavier material which may include
concrete and metallic beams. The outside of these walls are
covered by external siding that is sometimes metallic, and
the insides of these walls are filled with insulation material.
As a result, in- building penetration loss of external walls is
10-15 dB higher than the loss caused by passing through
traditional internal walls [1]. When the transmitter is out-
side the building, because of this extra power loss due to
in-building penetration, the paths that arrive after penetra-
tion though several walls become significantly weak and, at
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certain points, weaker than the signals coming through the
windows and doors after bouncing off the neighboring
buildings. When both the transmitter and receiver are
inside the building we usually neglect the effects of neigh-
boring buildings and the signal penetrations through out-
side windows and doors because the signal must cross the
outside walls twice to come back inside the building. At
that stage the signal is assumed to be so weak it can be
neglected.

For telecommunication applications the effects of in-
building penetration phenomena are reflected in additional
path loss and an increase in average rms multipath delay
spread. To observe the effects of in-building penetration on
geolocation applications, we move the transmitter from the
center of the building to the outside location shown in Fig.
2 and repeat our previous experiments and analysis. Figure
6 shows the received power versus distance in meters and
the best fit curve for the DLOS path, combined other paths,
and total received power. The range of the received signal
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B Figure 7. CDF of the error in predicted distance for the out-
door transmitter: a) as a function of different receiver sensitivies
and a dynamic range of 40dB; b) with a threshold of -80 dBm
and different dynamic ranges.

power for the DLOS path is 90 dB as compared to about 40
dB for the combined other paths and total received power.
When compared to the results of Fig. 3 for indoor-to-indoor
situations, the range of the power of the DLOS path in the
outdoor-to-indoor case is significantly larger, while the
range of total received power and the combined power in
the other paths remains approximately the same. In many
locations inside the building, the DLOS path has to pass
through many walls, including a heavy outside wall, while
other paths can enter the building through open doors and
windows. In other words, we may have many locations in the
building where we have reasonable power coming through
the external windows and doors but the DLOS path is
extremely weak.

Figure 7 shows the CDF of the error in predicted dis-
tance for a variety of sensitivities and dynamic ranges.
When compared with the graphs for indoor-to-indoor
applications shown in Fig. 5, the curves in Fig. 7 offer two
classes of errors, one less than ~ 10 m and the other more
than about 30 m. In the first group of profiles, when the
DLOS path is not detected, the next detected path has
arrived after penetration through the closest wall to the
transmitter, so the arrival time is less than 30 ns (10 m)
delayed from the arrival time of the DLOS path. In the
second group the falsely detected first path arrives through
windows and doors from external reflections, so the overall
path length is more than 90 ns (30 m). Therefore, the error
is either between the paths coming through penetration or
those coming through windows and doors, and these two
classes provide a distinct behavior in the error caused by
the receiver.

CONCLUSIONS

Because of the frequency-selective multipath fading charac-
teristics of the indoor radio channel, design of an accurate
indoor geolocation system is a challenging task. To provide a
foundation for quantitative performance evaluation of such
systems a methodology for statistical modeling of this chan-
nel for geolocation applications is presented. To relate the
performance of traditional GPS receivers to the more com-
plex RAKE-type receivers, the multipath profiles in an
indoor area were divided into three classes: DDP, NDDP,
and UDP. In the DDP case both RAKE-type and traditional
GPS receivers operate properly. In the NDDP case only
RAKE receivers function accurately, and in the UDP case
neither of the receivers is satisfactory. The statistics of the
occurrenceof the three classes of channel profiles in a build-
ing with harsh radio propagation characteristics were pre-
sented. The statistics of error in measuring the distance as a
function of the sensitivity and dynamic range of the receiver
as well as effects of outside walls were presented. As we
move reference transmitters to the outside of the building,
the statistics of the error in estimating the TOA of the
DLOS will change significantly. The signal arriving from
windows and doors through reflection from neighboring
buildings will cause larger errors in prediction of the TOA of
the DLOS path.
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ABSTRACT

In this paper we introduce a model for the distance error
measured from the estimated time of arrival (TOA) of the
direct path (DP) in a typical multipath indoor environment.
We wuse the results of our ultra-wideband (UWB)
measurement database in a sample office environment. To
begin modeling, first we separate the causes of the error into
multipath and undetected direct path (UDP), and then we
model them separately considering the variation of
bandwidth of the system. We show that the behavior of the
distance error consists of two parts; one that is from
multipath, and the other one from UDP. Both errors can be
modeled as Gaussian, so the final distance error is a mixture
of two Gaussian distributions. We also related the statistics
of the distributions to the bandwidth of the system.

KEYWORDS

Wireless networks, positioning, geolocation, ultra-wideband,
channel modeling

I.  INTRODUCTION

Geolocation systems are becoming more and more
popular. Recently the interests in location finding systems
are growing. Two existing location finding systems, namely
Glabal Positioning System (GPS) and wireless enhanced 911
(E-911), have been used to provide relatively accurate
positioning for the outdoor environment [1]. These
technologies, although accurate, could not provide the same
accuracy when applied to indoor positioning. The different
challenging indoor environment necessitates alternative
systems to provide accurate positioning. Therefore, the
design and development of indoor positioning systems
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requires in-depth modeling of the indoor wireless channel,
which is more specific to positioning application.

As mentioned, although many channel models for indoor
environment exists in the literature; their application to
geolocation is weak [2]. Therefore there is a great need in
channel models for application to indoor geolocation.

On the other hand, in recent years due to approval of
Federal Communication Commission (FCC) for using 3.1-
10.6 GHz for commercial use, Ultra-Wideband (UWB)
techniques are attracting more interest. Recently UWB has
been chosen for the physical layer of the new standard of
wireless personal area networks (WPAN) standard [3].

In [4] it has been shown that increasing the bandwidth of
the geolocation system can improve the accuracy of the
positioning. In this paper we use UWB technology to
introduce a channel model for indoor geolocation.

This paper is a continuation of [5] and [4], in which a
model for relating measured ranging errors using TOA to the
distance between two terminals was investigated. In [5] the
concept of distance error and modeling was introduced. Then
in [4] the effect of system bandwidth on performance of
geolocation systems was studied. In this paper we continue
the work on modeling the distance error by considering a
UWB system where its bandwidth varies from 3 to 6 GHz.
The modeling approach to the problem is also changed and
the emphasis is to have a more physical model rather than
mathematical. In order to introduce a practical model there is
always a trade off between simplicity versus accuracy and it
will be discussed later in more detail. The other difference is
to use the results of real measurements instead of Ray
Tracing simulation that make the claims conclusive.

The structure of the rest of the paper is as follows. Section
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Figure 1. Floorplan of the measurements in Atwater Kent (AK)(a) First Floor — Tx: Al, A2 (b) Second Floor — Tx: A0, B0, C0, DO (c)
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Figure 2. Distance error in two different types of channel profiles (BW = 1 GHz), (a) UDP, (b) DDP

Il is about the measurement system and scenario. Section 111
consists of the modeling part, which includes the modeling
framework and strategy, and finally Section IV is the
conclusion.

II. DESCRIPTION OF UWB MEASUREMENT
SYSTEM AND MEASUREMENT SCENARIO

A.  Measurement System and Scenario

Magnitude and phase frequency domain measurement
method was used to measure channel characteristics. The
procedure of this method is described in [6]. In our new
UWB measurement system we used a pair of UWB omni
directional antennas and Agilent Technologies E8363B
vector network analyzer. The bandwidth of the
measurements is 3-6 GHz.

In order to generate a database of channel impulse
responses of a typical indoor area, the measurements were
done in a typical indoor office environment with total of 405
points. They were carried out in the first, second, and third
floor of Atwater Kent Laboratory building of Worcester
Polytechnic Institute. Figure 1 shows the floor plans of the
measurements and positions of transmitters (Tx) and
receivers (Rx). The pairs of Tx and Rx were chosen in a way
to cover Line-of-Sight (LOS) and Obstructed LOS (OLOS)
cases and also Undetected First Path (UDP) cases [2] [7].
The whole measurement campaign consisted of many
measurement sets. During each measurement set the position
of Tx was constant and Rx was changing from a place to
another. Also to reduce the stochastic property of channel
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Figure 3. Scatter Plots of distance error for DDP, (a) 100 MHz,
(b) 500 MHz

profiles each measurement pair were measured two or three
separate times. The distance between consecutive RX’s
varies depending on the measurement set. It is 0.5, 1, or 2
meters.

I11. DISTANCE ERROR MODELING

A. Modeling Framework

Assuming that the actual distance between the transmitter
and the receiver is d, and the estimated distance isd , we

define the distance error & , as,

eg=d—d. (1)
The subscript w is for system bandwidth and comes from
[4] that mentions estimated distance and hence distance

error, both highly depend on the system bandwidth.

B. Modeling Strategy

As it was mentioned in the introduction, in this paper the
emphasis in modeling is on having a more physical model
rather than only mathematical fitting. The modeling is about
a physical phenomenon, experimentally measured, so the
modeling should be able to justify the behaviors as much as
possible.

By looking at Fig. 2 two types of channel profiles are
shown. Figure 2-(a) shows a situation where the direct path
(DP) is detected and Fig. 2-(b) shows a case that the DP is
not detected. In both cases we detect the first available peak,
which is the peak above the threshold.
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Figure 4. PDF’s of distance errors for DDP, (a) 100 MHz, (b)
500 MHz
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The threshold is determined by the noise power and the
side-lobe amplitude of the peaks that depends on the selected
window. In our experiment we used hamming window that
has -31dB side-lobe amplitude. But to remove the random
noise effects we used a 5 dB margin that makes it -26 dB.

In the first case, the first peak is mainly created by the first
path. But because of the multipath effect it can be deviated
to both sides. In [5] and [4] it is discussed that this type of
error is modeled as a zero mean Gaussian with a factor of
distance; since it is also distance dependent. We consider
this error as multipath error. It can be shown that multipath
error can be reduced with increasing the bandwidth.

Looking in the second case, the first peak does not contain
the first path anymore. In fact the first path is been weakened
so much that it is below the threshold. Now we have another
type of error that we call it UDP error. It is interesting that
still we have our multipath error on top of the UDP error,
which changes the position of the detected peak.

To approach this phenomenon, we model the distance error
as a summation of a multipath error part, which is shown
with &, and always exists, and a UDP error part, &pp, that
some times happens as follows

Edw =Emw Tt Sw *€UDP,w 2

In (2) &is a random variable (RV) that is based on having a
UDP situation or not, it is either “1” or “0”. In the next two
subsections we will provide more details on modeling each
type of error.

C. Modeling of Multipath Error

To model the multipath error we need to look into channel
profiles that the DP is detected. These channel profiles are
called Detected DP (DDP) and only have the multipath error,

SO &4y =&myw IS true for this case. Figure 3 shows the

scatter plots of &, versus distance, d, for DDP channel
profiles and two different bandwidths 100 MHz and 500
MHz. As we can see by increasing the distance, &,

increases. But the increase pace seems to be slower than
linear, which was observed from Ray-Tracing (RT) results in
[4]. Also we can observe that the symmetry around the
horizontal axis is not preserved as in the RT case. This can
be justified by the fact that the arriving paths next to the DP
are all on one side of the DP and hence their effect on the
peak can not be even.

Figure 4 shows the probability density function (PDF) of
the corresponding scatter plots. We can observe that by
increasing the system bandwidth the variance of the error
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Figure 6. CDF comparisons between measurements and model
for DDP points, (a) BW = 100 MHz, (b) BW =500 MHz

decreases. Also we can see that the mean is not zero, which
explains the asymmetry, which is another consequence of
having all neighbor arriving paths after DP.

Similar to [5] and [4] in order to model the increase of
&mw With increasing distance, we introduce a new

parameter x,, the normalized distance error. The normalized
distance error is defined as follows:

Y = Emw (3)
log(1+d)

In (3) the summation with one is used to avoid the negative
part of logarithm or facing division by zero situations. We
want to use the specific property of the logarithm that has
slower increasing pace than linear; this property is true for
the arguments greater than 1. The scatter plots of x, are
shown in Fig. 5. It can be seen that the normalized one has
relatively constant spread across the distance axis.

We used Gaussian distribution to model the distribution of
% Fig. 6 shows the complementary cumulative distribution
function (CDF) comparison between the measurement
results and the model, for the DDP points.

So, the multipath error has been modeled as

Emw :G(leUW)IOg(1+d) (4)

Where, G(m,,, ay,) is a Gaussian number with mean m,, and
variance o%,. Table 1 shows the values of m, and &%, for
different bandwidths obtained from the measurements.

D. Modeling of UDP Errors

In order to model the UDP errors we need to have ideas
about behaviors of & and gyppyw. FOr & we can find a good
approximation for probability of occurring UDP. In order to
model this we calculate probability of UDP as a function of
distance and bandwidth. For the distance we consider two
cases for the probability, one for distances less than 10
meters and the other for distances of more than 10 meters.
The 10 meter distance criteria comes from the fact that as the
receiver goes farther from the transmitter probability of
having UDP point increases [8] [9]. Then to calculate this
probability we divide the number of UDP points in that
region by the total number of points in the same region.

Table 1 shows this approximation for different bandwidths.
As you can see probability of UDP in distances of more than
10 meters is much higher than the other case. Another
interesting observation is that by increasing the bandwidth,
probability of having UDP (Pypp,y) increases, this is because
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in higher bandwidths, arriving neighbor paths are resolved,
separated and usually their individual power is less than their
combined power. So, there is an important conclusion that
by increasing the bandwidth we can not always have a better
situation. In fact, as it happened in this case we can have
more UDP points.

So, &will be an RV with the following distribution:

f (5): (1— PUDP,W)§(§)+ PUDP,W5(§ —1) (5-9)
P d<10m

PUDP,W _ closeUDP,w (5-b)
PfarUDP,W d>10m

where Pgjose upp.w @Nd Prar uppw €an be found in Table 1.

To model &ypp,, We look into PDF of g,pp,, for different
bandwidths. Figure 7 shows these PDFs. To examine the
effect of UDP error, alone, we used the UDP points from the
database.

We used Gaussian distribution to model the distribution of
guppw Fig. 8 shows the complementary CDF comparison
between the measurement results and the model for the UDP
points. So, the UDP error has been modeled as

EuppP,w = G(mUDP,w:O'UDP,w) (6)

Where, G(Muppw, ouppw) IS @ Gaussian number with mean
Mypp,w and variance OZUDP’W. Table 1 shows the values of m,,
and OZUDP‘W for different bandwidths obtained from the
measurements.

E. The final Model for Distance Error

So far, we have separated two different causes for distance
error and modeled each one of them separately. In this
subsection we use the results of both previous parts to
finalize our model.

200 MMz {t 1GHz

Probability (Emor > Abscissa)

E 1 :
Distance Error (m)

Distarce Ertor {m)
) b}

Figure 8. CDF comparisons between measurements and model
for UDP points, (a) BW = 200 MHz, (b) BW =1 GHz
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B 4 ]
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Distance Ermce m)
1] {6}

Figure 9. CDF comparisons between measurements and model
for total points, (a) BW =200 MHz, (b) BW =1 GHz

Despite our previous works [5] [4] [10], the modeling
strategy in this paper is not based on partitioning the area
into LOS and OLOS. On the other hand we used the concept
of UDP and the modeling is based on UDP/DDP situation,
which is more essential for distance error modeling.

As noted in (2) the distance error &, is modeled as a
summation of two different errors that each of them has been
identified. The final model can be expressed as follows:

5|=d+G(mW,oW)~Iog(1+d) 7-4)
-a
+ S -G (Mypp s Tuppw )

£(&)= [0~ Ripp.w)- 5(E)+ Popp.w - 5(E-1) (7-b)

Figure 9 shows the comparison of complementary CDFs
between measurements and model results for two
correspondent bandwidths and Fig. 10 shows the scatter
plots of measurements and model for bandwidths 200 and
1000 MHz. As we can see the model decently follows the
measurements.

So, one can use the proposed model to estimate the
accuracy of distance estimation in a Time-Of-Arrival (TOA)
based indoor geolocation system.

IV. CONCLUSION

In this paper, we introduced a model for the estimated
distance from TOA of the first path in an indoor multipath
environment typically used for WPAN applications. Using
results of UWB channel measurements we showed how in a
typical indoor environment the model relates the distance
error to the bandwidth of the system, and occurrence of UDP
can affect the distance error.

We separated the causes of the distance error into
multipath and UDP and modeled each of them with respect
to the system bandwidth. We concluded that an increase in
both the distance and the bandwidth of the system can
increase the chance of having UDP. However, increasing
bandwidth decreases distance error. As a result a
compromise in system bandwidth has to be made between
probability of UDP occurrence and TOA estimation
performance. We also demonstrated that the results of the
model closely fit the empirical data.
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Table 1. Typical values of model parameters derived from the measurements

w (MHZ) My (cm) oy (cm) Pciose UDP,w Pfar UDP,w Mupp,w(cm) Oupp,w(cm)

20 3.66 515 0 0.005 -12.83 0

50 1.57 205 0 0.009 24.48 21.1
100 0.87 115 0 0.091 5.96 358.5
200 0.47 59 0.006 0.164 3.94 289.0
500 0.21 26.9 0.064 0.332 1.62 80.9
1000 0.09 13.6 0.064 0.620 0.96 60.4
2000 0.02 5.2 0.070 0.740 0.76 71.5
3000 0.004 4.5 0.117 0.774 0.88 152.2
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Abstract— In this paper we introduce a model for the distance
error measured from the estimated time of arrival (TOA) of
the direct path (DP) between the transmitter and the receiver
in a typical multipath indoor environment. We use the results
of a calibrated Ray Tracing software in a sample office
environment. First we divide the whole floor plan into LOS
and Obstructed LOS (OLOS), and then we model the distance
error in each environment considering the variation of
bandwidth of the system. We show that the behavior of the
distance error in LOS environment can be modeled as
Gaussian, while behavior of the OLOS is a mixture of Gaussian
and Exponential distribution. We also related the statistics of
the distributions to the bandwidth of the system.

Keywords-wireless networks, positioning, geolocation, indoor
communications, channel modeling

l. INTRODUCTION

Indoor geolocation is a new emerging technology.
Recently, accurate location finding techniques and location-
based applications for indoor areas are becoming more
interesting. The applications vary from WLANS security to
patient positioning in hospitals.

A general geolocation system consists of three major
elements: location-sensing module, positioning algorithm
module, and the display module. The location-sensing part
which is used in multiple sample modules due to
trianglization, receives the RF signal, extracts appropriate
features and delivers them to the positioning algorithm part.
Trianglization is a technique that finds the position of the
mobile terminal (MT) from its relative distances to the
reference points (RP). Furthermore, the accuracy of the MT
positions can be enhanced by increasing the number of RPs
which increases the number of circles.

Depending on the environment and applications, features
vary from one to another. For locationing applications,
features can be directly related to the distance between MT
and RP, such as Time of Arrival (TOA), or indirectly related
to the distance such as Received Signal Strength (RSS), or
they can even be related to the direction of the path between
MT and RP, such as Angle of Arrival (AOA).

The second module is the positioning algorithm, and it
processes the metrics reported by the location sensing
elements to estimate the location coordinates of MT. The

display system illustrates the location of the MT to the users
[1].

Among distance measurement metrics and features for
geolocation systems, TOA is the most popular one [2].
However, except for the preliminary work in [3] there is no
model available in the literature for the distance error that
can be used for performance evaluation of these algorithms.
In addition to WPAN application, these models can also be
useful for other applications such as design of indoor
geolocation algorithms [4].

This paper is a continuation of [3] to introduce a model
for relating measured ranging errors using TOA to the
distance between two terminals and studies the effect of
bandwidth in performance of the system.

The structure of the chapters and sections of this paper is
as follows. Chapter I, which this text belongs to, provides an
introduction for the geolocation technologies. Chapter 1l
gives some information about the Ray Tracing software
(used for simulation), the way multipath makes errors in
TOA estimation and the simulation scenario. Chapter Il is
about LOS and OLOS modeling and Chapter 1V is the
conclusion.
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Figure 1. Effects of multipath in estimation of the distance from TOA
of the first path
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Figure 2. Scatter plots of distance error for (a) Simulation, w = 50 MHz (b) Model, w = 50 MHz (c) Simulation, w = 500 MHz (d) Model, w = 500 MHz

II.  DISTANCE ERROR CALCULATION USING RAY

TRACING (RT)

A. Distance Estimation in Multipath Environment

The major problem of radio propagation in all of the
telecommunication systems is the multipath effect. Like
other telecommunication systems, geolocation systems also
suffer from the multipath effect. To illustrate how multipath
effect can cause error in calculating the distance from TOA,
assume that the transmitted signal p(t) travels in a multipath
environment, and after many transmissions and reflections
arrives at the receiver as s(t), which is given by

L -
S(t) = zan p(t -7 )el¢n
n=1

@)

where a,’s, 1,’S and ¢,’s are attenuation, delay and phase
related to each particular received path and L is the total

number of received paths [5].

Figure 1 clarifies this issue by describing the relationship
expected and
estimated TOA of the first path, and TOA estimation error.

among arriving paths,

channel

The real distance is obtained from multiplication of expected
TOA of the first path by the speed of light

(c=3x10°m/s). Similarly, from the estimated TOA of

the first path, which is the first peak we can derive the
estimated distance, and finally the distance measurement
error can be obtained from TOA estimation error. In this

Simulation
0§ £ 08

BW = 60 MHz

04 . ¥ 04

Model (Gaussian)

BW = 60 MHz
T

004

003

002

figure, the channel profile is produced by assuming that a
40MHz raised cosine pulse with a roll-off factor of 0.5 was
transmitted.

To simulate the strength and the arrival time of the paths,
similar to [6], we use the Ray Tracing (RT) software. The
use of the RT software makes it is possible to simulate the
behavior of the signal traveling from the receiver to the
transmitter based on optical rules. By locating a pair of Tx-
Rx, RT simulates all the paths to Rx including necessary
information such as received path amplitude, time delay,
arrival angle, departure angle, phase, number of reflections,
and number of transmissions. Detailed explanation about RT
can be found in [5].

B. Simulation Scenario

To generate a large database of the channel impulse
responses of a typical indoor area we used a calibrated floor
plan [7] for RT. Similar to [3] the floor plan is taken from the
second floor of Atwater Kent Laboratory, Worcester
Polytechnic Institute, Worcester, MA. The calibration
process is aimed to fit the empirical data with the results of
RT simulation by adjusting propagation parameters
representing physical characteristics of the material used in
the building. The position of the transmitter is constant

during the whole simulation procedure and it is located in the
middle of the floor plan. For locating the receivers, several
hundred points were selected from a grid with approximately
20cm minimum distance between the adjacent points.
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Figure 3. Scatter plots of LOS normalized distance error for (a) Simulation, w = 50 MHz (b) Model, w = 50 MHz (c) Simulation, w = 500 MHz (d) Model, w

=500 MH7
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I1l.  DISTANCE ERROR MODELING

A. Modeling Strategy

The behavior of the channel in LOS and OLOS is
basically different. This difference stems from the fact that in
OLOS case the Direct LOS (DLOS) path, which in
positioning is of particular importance, often is not the
strongest path. But in LOS situation the DLOS path has the
highest amplitude because it not only has the lowest path
length and therefore the least path loss due to distance, but it
also hasn’t experienced any loss because of reflection or
transmission.

Furthermore, to analyze the channel behavior in each
region differently we divided the whole floor plan into LOS
and OLOS. In LOS region the minimum distance is close to
zero and the maximum distance is around 5.5 meters. In
OLOS region the distance varies between 3 to 11 meters.

Unlike [3] in this paper the modeling emphasis is on
studying the effect of bandwidth on distance estimation error.
Assuming that the system has bandwidth of “w” we are to
find the distance for the channel profile. Then the estimated

distance is d,, and the distance error is Eq.w» Which is
defined as

g4y =0, —d @)

where d is the real distance. This definition is consistent for
both LOS and OLOS cases.

In the next two sections we explain the modeling of the
distance errors in LOS and OLOS environments.

B. LOS Modeling

Figures 2-(a), (c) show the scatter plots of &, ,, derived

from the simulation results for two different bandwidths 50
and 500 MHz. As we discussed in [3], to overcome the
increase of &, , with increasing the distance, we introduce a
new parameter x, the normalized distance error. The
normalized distance error is defined in (3), and for the LOS
case it is shown as .

Table 1. Typical values of model parameters and the fitting error for
different bandwidths for LOS

w (MHz) o, (cm Eq (cm)
30 34.33 29.40
40 34.33 15.34
50 19.06 5.57
100 6.48 2.59
200 2.6 2.54
500 0.83 1.60
1000 0.27 0.58
2000 2.1e-14 3.4e-14
3000 2.1e-14 3.3e-14

gd w

Viw = d' @)

This definition results in a general form of representing
the estimated distance in terms of normalized distance error,
which is shown in (4).

d=d(+y,,) (@)

Similar to [3], we assume that y,, has zero mean

Gaussian distribution with variance derived from the
simulation results, which has the form of

2
_ Vi

2
e 20y (5)

1
f(yLW):\/Z—a
Lw

where o, is the standard deviation (STD) of y,,,.

Figures 3-(a), (c) show the corresponding normalized
distance errors to Figs. 2-(a), (c), derived using (3), which are
for bandwidths 50 and 500 MHz, respectively. Figures 3-(b),
(d) are the generated normalized distance errors from the
introduced model; they correspond to Figs. 3-(a), (c)
respectively and have the same number of points and
variances as their simulation version. To generate the
distance error sets from (3) we can conclude

Eqw =V xd (6)

and using the distance set that we used for the simulation
phase, we can derive the distance errors. The results are
shown in Figs. 2-(b), (d). To measure the similarity of the
introduced model with the results of simulation, cumulative
distribution function (CDF) has been used. The CDF curves
for two bandwidths 50 and 500 MHz are shown in Figs. 4-
(@), (b). It can be seen that for higher bandwidths the CDF
curve doesn’t resemble the Gaussian shape. This is due to
quantization error in the time axis of channel profiles. In
addition, decreasing the time step can solve this problem but
the amount of distance error and the fitting error (discussed
in the next paragraph) is so small that it makes this
approximation quite accurate. This quantization effect can be
clearly seen on figures 2-(c) and 3-(c).
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Figure 5. Standard deviation of normalized distance error (o) and the
average fitting error (&) vs. 1/Bandwidth for LOS

To show how closely the CDF curve of the model
follows the CDF curve of the simulation, we defined a new

parameter, which is called average fitting error or £, . The
average fitting error is defined as the average of the
horizontal difference between the curves of the simulation
and the model and it is derived from the area created between
these two curves. Table 1 shows the standard deviation of the
normalized distance error and the average fitting error for 9
different bandwidths from 30 to 3000 MHz. Figure 5 shows

the two parameters o, and &g, versus 1/w, as it can be

seen the model fits well until the lower limit of 40 MHz.
Based on these results and from polynomial fittings (7)

introduces an equation to find o, in cm, where A =52691,

B.=0.43, m=10* and w is the bandwidth in MHz
(w>40MHz) .

1
O-LW:AL(W_mL)Z-i_BL (7

C. OLOS Modeling

Figures 6-(a), (c) show the scatter plots of &, ,, derived

from the simulation results of OLOS environment for two
different bandwidths 50 and 500 MHz. Here, we again used
the concept of normalized distance error, because for the

Model (Gaussian + Exponential)

W =50 MHz)

20 Simulation 20

«  BWY =50 MHz)

06r

5 — “WWeighted Gaussian Distribution
: Middle --- Weighted Exponential Distribution
07 e 2
06
05k
04r
osl Paositive
Megative
02r
01
-1 08 -ADA 05 1 18 2 25 3

Fiaure 7. Assumed distrihution for the OI OS with the nartitionina

major number of points increase in the distance error along
with distance is still visible. So, the equations (3) and (4) can
be applied for OLOS case, but the normalized distance error

isshownas 7, .

To estimate the distribution of y,, we made the same
assumption as in [3], which was a mixture of zero mean
Gaussian and Exponential. The distribution of y ., can be
written in a compact form as

2
Yow

203,
g o +WEXpN

Yow +‘7/ OVJ g o

(8)
27 Oow

(7o) ZWGWW
Oow

where Wg,, and Weg,, are the weights of the Gaussian and
Exponential parts, o, is the STD of Gaussian distribution,

and A,, is the Exponential distribution parameter.

To extract the parameters for OLOS we used the same
technique that has been used in [3] with a small modification.
As it can be seen from table 1, for high bandwidths distance
error dramatically decreases, in such a way that it goes
beyond the simulation resolution. In those cases the data
does not seem to be correct anymore and most of the points
have equal distance error, which makes the distribution have
a delta function close to zero, which causes errors in
parameter calculations. To overcome this problem we

Simulation Model (Gaussian + Exponential)
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Figure 6. Scatter plots of OLOS normalized distance error for (a) Simulation, w = 50 MHz (b) Model, w = 50 MHz (c) Simulation, w = 500 MHz (d)
Model, w = 500 MHz
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Figure 8. Comparison between complementary CDFs of distance error
for OLOS, (a) w = 50 MHz, (b) w = 500 MHz

divided the distance error region into three sections, middle,
negative, and positive. The middle section is a very narrow
(with a constant width of A=0.002) region between the
positive and negative regions. Then, we counted half of the
middle points as negative and half as positive. Figure 7
shows the distribution and the partitioning technique. To
derive the parameters, first from the number of negative and
positive points we find the values of W, and We,w, Then
we calculate the mean of the negative section assuming that

mean of the middle points is -A/2, and after calculating o,
we calculate the mean of the positive part assuming that
mean of the middle points is A/2 to derive A,,.

Figures 6-(b), (d) are the generated distance errors using
the normalized distance errors as in (3) from the introduced
model; they correspond to Figs. 6-(a), (c) respectively and
have the same number of points as their simulation version.
It can be seen that the Exponential part in distance errors has
not decreased like the Gaussian part. To compare these
scatter plots, Figs. 8-(a), (b) show the CDFs of distance error
for 50 and 500 MHz bandwidths for the OLOS case. To
illustrate that the Gaussian model used for LOS does not fit
for the OLOS case we include its CDF curve in the figures as
well. For 50 MHz bandwidth &g, is 11 cm for Gaussian

Exponential mixture and 65 cm for Gaussian, while for 500
MHz they are 6 and 63 cm.

Table 2 shows the typical values of model parameters for
different bandwidths, and the corresponding average fitting
error values. To use the polynomial fitting we need to sketch
them versus 1/w, as it is shown in Fig. 9. For the OLOS case
the considered bandwidth range, which is used for

Table 2. Typical values of model parameters and the fitting error for
different bandwidths for OLOS

(le‘;z) oy (€M | (MDA, | & (cm)
30 18.86 1.75 32.85
40 13.71 1.92 16.70
50 9.27 1.98 11.13
100 2.67 4.67 8.84
200 0.78 3.50 10.70
500 0.29 2.31 6.37
1000 0.15 2.07 9.02
2000 0.13 2.93 6.64
3000 0.13 2.27 7.25
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polynomial fit, is from 30 to 3000 MHz. From the results of
second order polynomial fit similar to (7), (9) introduces an

equation to find oy, in cm, where A;=9052, Bo=2.6,
mo=0.16, and w is in MHz.

1
O-OW:AO(W_mO)2+BO C))

Since the variation of A versus bandwidth is very small,
in order to have a simpler model it is assumed constant and
equal to mean of all the values, which is equal to 2.6 m™.

IV. CONCLUSION

In this letter, we introduced a model for the estimated
distance from TOA of the first path in an indoor multipath
environment typically used for WPAN applications. Using
results of empirically calibrated Ray Tracing software we
showed that in a typical indoor environment how the model
relates the distance error to the bandwidth of the system, and
demonstrated that the results of the model closely fits the
empirical data.
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Abstract—Using TOA to determine the distance between the
transmitter and the receiver is the most popular technique for
accurate indoor positioning. Accuracy of measuring the distance
using TOA is sensitive to the bandwidth of the system and the
multipath condition between the wireless terminal and the access
point. The behavior of the distance measurement error using
TOA techniques in LOS and OLOS indoor environments are
substantially different. In general, as the bandwidth increases the
distance measurement error decreases. However, for the so called
undetected direct path (UDP) conditions the system exhibits
substantially high distance measurement errors that can not be
eliminated with the increase in the bandwidth of the system. In
this paper we provide an analysis of the behavior of super-
resolution and traditional TOA estimation algorithms in LOS,
OLOS and UDP conditions in indoor areas. The analysis is based
on the frequency domain measurements of the indoor radio
channel propagations in several indoor areas with special
attention to the UDP conditions.

Keywords-indoor geolocation; super-resolution algorithms;
time of arrival estimation; indoor radio propagation;

I INTRODUCTION

In recent years, a growing interest in location-finding
systems have emerged for various geolocation applications.
Two existing location finding systems, namely Global
Positioning System (GPS) and wireless enhanced 911 (E-911),
have been used to provide relatively accurate positioning for
the outdoor environment [1]. These technologies, although
accurate, could not provide the same accuracy when applied to
indoor positioning. The different physical requirements of the
indoor environment necessitate alternative systems to provide
accurate positioning. Therefore, the design and development
of indoor positioning systems requires in-depth modeling of
the indoor wireless channel.

Although  many  wideband radio
telecommunication application exist in literature, their
relevance to geolocation systems is distant [2]. In
telecommunication application, the sought after parameters are
the distance-power relationship and the multipath delay spread
of the channel [3]. However, in geolocation application, the
parameters of interest are the relative power and the time of
arrival (TOA) of the direct line of sight (DLOS) path.
Therefore, the accuracy of TOA measurement and modeling

models  for

of the DLOS path is a measure of the performance of indoor
geolocation systems. However due to severe multipath
conditions and the complexity of the radio propagation, the
DLOS path cannot always be accurately detected [2, 4].
Improving the DLOS detection and TOA estimation requires
improving the time domain resolution of the channel response
in order to resolve the multipath and enhance the accuracy of
estimation.

Spectral estimation methods, namely super-resolution
algorithms have been recently used by a number of researchers
for time domain analysis of different applications.
Specifically, they have been employed in frequency domain to
estimate multipath time dispersion parameters such as mean
excess delay and RMS delay spread [5]. In addition, [6] used
super-resolution algorithms to model indoor radio propagation
channels with parametric harmonic signal models. Recently,
however, super-resolution algorithms have been applied to
accurate TOA estimation for indoor geolocation with diversity
combining schemes [7]. The multiple signal classification
(MUSIC) algorithm was used as a super-resolution technique
and it was shown to successfully improve the TOA estimation.

In indoor positioning, the behavior of TOA estimation in
different environments is another important factor in
determining the performance of geolocation systems. Besides
physical classification of line of sight (LOS) versus obstructed
line of sight (OLOS), [2] have shown that there exists further
classification that depends on the channel profile and the
characteristics of the DLOS path. The first category of this
classification is dominant direct path (DDP) where the DLOS
path is detected and it is the strongest. The second category,
nondominant direct path (NDDP) is when the DLOS path is
detected but it is not the strongest. The last category is
undetected direct path (UDP) where the DLOS is undetected.

In this paper, a comprehensive measurement database has
been created for these classifications with emphasis on finding
more UDP cases. The performance and behavior of the DLOS
distance error, which is directly related to TOA estimation
error, is analyzed in all these different scenarios. In addition,
the performance of different TOA estimation algorithms,
namely, inverse Fourier transform (IFT), Direct Sequence
Spread Spectrum (DSSS) and super-resolution Eigenvector
(EV) algorithm is compared for different environments and
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bandwidths. The further classification of channel profiles and
the performance analysis provide a deeper insight into
wireless channel modeling for indoor geolocation.

The paper is organized as follows. Section II describes
how the indoor channel profiles were classified. Section III
describes the theoretical background of the TOA estimation
algorithms used in this paper. Section IV describes how the
measurement system was implemented to create the database
used in the analysis. Section V provides performance
evaluation of the different algorithms in different
environments and bandwidths. The conclusion is provided in
section VI.

II.  INDOOR CHANNEL CLASSIFICATIONS FOR TOA
ESTIMATION

Wideband radio modeling for indoor geolocation
application requires examining the channel profiles at different
environments. The behavior of the channel profile or
specifically the TOA of the first path depends on the physical
location of the receiver with regards to the transmitter. Thus it
is pertinent to introduce different measurement classifications
to better analyze and characterize the behavior of TOA error.
The performance of TOA estimation varies substantially in
different environments. Two classification categories to be
discussed next are based on the channel profile of the
measurement data. The channel profiles were obtained by
applying the IFT on the frequency domain measurement
followed by a Hanning window.

A. LOS and OLOS

One of the major classifications in the study of TOA
modeling is based on physical properties of the indoor
environment. Accordingly, LOS and OLOS are easily
distinguishable by the measurement scenario. When both
transmitter and receiver have no physical obstructions between
them the measurement is classified as LOS. When an
obstruction exists, such as a wall, the profile is classified as
OLOS. For the former case, the DLOS path is the strongest
and thus the TOA can be measured with great accuracy. In the
latter, however, the DLOS path is obstructed by one to several
walls depending on the location of the receiver. The accuracy
of TOA in this case, suffers due to the unavailability of a
strong DLOS path. In fact for some cases, the first path is
undetectable causing the major error in the estimation of TOA.

B.  DDP, NDDP and UDP

This classification is based on the channel profile and the
strength and availability of the DLOS path. Regardless of
physical obstructions, the measurement is classified according
to the DLOS path. For this classification, a threshold was used
in order to distinguish between a DDP, NDDP and a UDP.
Since the noise floor of the measurement system is -100 dBm,
and the Hanning window has side lobes of -31 dB below the
peak of the profile, a threshold is selected according to the
larger value of the two. This ensured that the first peak of the
channel profile is classified correctly. DDP is the easiest to

detect from the profile because it has a distinct strong first
path. This category has an advantage where traditional GPS
receivers can lock onto the DLOS path and detect its TOA
accurately. When the first path gets weaker but still above the
threshold, the profile fits in the NDDP category. For this case,
a significant loss of accuracy in TOA estimation can be
reduced when a more complex RAKE receiver is used in order
to resolve the multipath and intelligently detect the TOA of
the DLOS path. A profile is a UDP, when the first path is
below the threshold indicating loss of the DLOS path. In this
unfavorable situation neither the GPS nor the RAKE receiver
can accurately detect the TOA and this, specifically, causes
the most significant error in indoor positioning applications.
Overall UDP is expected to show substantial degradation in
TOA estimation for geolocation application when compared
with the other scenarios.

III. TOA ESTIMATION ALGORITHMS

Detecting the DLOS path requires obtaining the time-
domain channel profile from the frequency domain
measurement data. The following TOA estimiation algorithms
provide different time domain resolutions that are directly
related to accuracy of TOA estimation.

A IFT

A simple and conventional TOA estimation algorithm, IFT
provides a time domain representation of the channel profile
from the frequency domain measurement data. When the time
domain response over part of the time period is desired, the
chirp-z transform (CZT) is preferred, providing flexibility in
the choice of time domain parameters with the cost of longer
computational time as compared with the IFT. As mentioned
earlier, a Hanning window is also used to avoid leakage and
false peaks by reducing the sidelobes of the time domain
response with the cost of reduced resolution. The peak
detection algorithm then selects the closest peak to the actual
TOA. In this paper, the term IFT will generally mean
application of the CZT unless otherwise stated.

B. DSSS

Another estimation algorithm uses the cross-correlation
techniques with DSSS signals. In order to simulate DSSS
signal-based cross-correlation technique, the frequency
response of a raised-cosine pulse with rolloff factor 0.25 is
first applied to the frequency domain response as a combined
response of band-limitation pulse-shaping filters of the
transmitter and receiver. Then, the resultant frequency
response is converted to time domain using the IFT for TOA
estimation.

C. Super-resolution (EV/FBCM)

In this paper, a more complex algorithm, EV is used as a
super-resolution technique in TOA estimation for indoor
geolocation. The algorithm uses a spectral estimation
technique to convert the frequency domain measurement data
into the time domain profile needed for determining the TOA
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Figure 1. Functional block diagram of the EV/FBCM super-resolution
TOA estimation algorithm.
of the DLOS path. The channel frequency domain

measurement data are obtained from the measurement
database described in section IV. EV super-resolution
algorithm is based on eigen-decomposition of the
autocorrelation matrix of the input measurement data. The
autocorrelation matrix is given by

R, =E{xx"}, (1)

where x = H + w is the measurement data. H is the measured
frequency domain channel impulse response and w is the
additive white measurement noise with zero mean and
variance (c,)’. Superscript H is the Hermitian, conjugate
transpose of a matrix. Figure 1 shows a block diagram of the
algorithm. The autocorrelation matrix is estimated from the
input frequency domain channel measurement data. The L-
dimensional space that contains the signal vector x is split into
two orthogonal subspaces, known as signal subspace of
dimension L, and noise subspace of dimension (L-L,), by the
signal eigenvectors and noise eigenvectors, respectively. The
multipath delays 14, 0<k< L,-1 can be determined by finding
the delay values at which the following pseudospectrum
achieves maximum value

1
EV (7)= = ’ @

Z |Qk V(T)|

k=L,

DT Qy, L<k<L—1 are

where v(t) = [1 e/ * p kS

the noise eigenvalues and q, are the noise eigenvectors.
Therefore, maximizing the pseudospectrum in (2) will occur
for the delay values corresponding to the noise eigenvalues
and eigenvectors which minimize the denominator. In EV
algorithm the pseudospectrum of each -eigenvector is
normalized by its corresponding eigenvalue ;. Once the
multipath delays in the pseudospectrum are obtained then a
peak detection algorithm calculates the TOA of the DLOS
path as shown in Fig. 1. In practical implementation the
estimate of the correlation matrix is further improved using the
forward-backward correlation matrix (FBCM). More detailed
description of the EV/FBCM algorithm can be found in [7].
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Figure 2. Measurement campaign on the 3™ floor of Atwater Kent
building.

IV. MEASUREMENT OF DIFFERENT CHANNEL PROFILE
CLASSES

Analyzing the performance of indoor geolocation systems
in different environments requires an experimental basis on
which to draw useful conclusions. Measuring different
channel profile classes was conducted using the frequency
domain measurement system. The creation of a database from
these measurements helped in establishing necessary
foundations for analysis. In this section, the measurement
system and the procedure for creating the database are
described.

A. Measurement System

One way to experimentally calculate the TOA is through
the use of frequency domain measurement system which is
described in [8]. The main component of this system is a
network analyzer that sweeps the channel from 900-1100
MHz. After passing through a 30 dBm amplifier, the output is
connected to the transmitter antenna by a cable. The receiver
is connected to an attenuator and then to the receiver port of
the network analyzer. Both antennas are 1 GHz monopole
quarter wave adjusted on square plates. The frequency domain
measurements were conducted by fixing the transmit antenna
and moving the receiver around the desired locations. The
analyzer has a sensitivity of -100 dBm.

B. Measurement Database

A measurement database was created by combining
previous measurements produced by the Center for Wireless
Information Network Studies (CWINS) lab and recent
measurements conducted on the third floor of Atwater Kent
(AK) building, the electrical engineering department at
Worcester Polytechnic Institute (WPI). The previous
measurements include the LOS measurements taken on the
second and third floor of AK building reported in [9], and
mainly OLOS measurements reported in [10]. After
classifying these measurements it was apparent that they
lacked sufficient UDP cases for statistical analysis. Therefore,
the recent measurements were conducted on the third floor of
AK building with special attention to generation of more UDP
cases. In order to analyze the behavior of the DLOS path in
such unfavorable conditions it was necessary to create a
database tailored towards this kind of classification.
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Extensive measurement campaign was carried out on the
3" floor of AK building to seek out UDP conditions and
understand how and where they are created. The search for
UDP required thorough analysis of transmitter-receiver
locations within the building in order to vary the attenuation
effect on the DLOS path and examine its effect on the channel
profile. Figure 2 shows the 3™ floor plan of AK and the
respective measurement points. The most effective locations
for the receiver in this case were in the corridors, thus
increasing the number of obstacles in the DLOS path. The first
set of measurements was conducted with the transmitter in
room 320 and the receiver moved along the un-shaded region
of the corridors comprising 64 measurement points as shown
in Fig. 2. The second set of measurements was conducted with
the transmitter placed in the corridor to the right of AK 320
and the receiver was moved along the shaded region of the
corridors comprising 41 points. The receiver measurement
points are 1 meter apart but for those located in the corridor
below room 315 they are 50 cm apart. After classification of
the data, the 105 measurements comprised of 1 DDP, 62
NDDP and 42 UDP.

From Fig. 2 it is apparent that there are a substantial
number of UDP scenarios sparking a concern about the
performance of indoor positioning in those regions. The UDP
points are clearly labeled with black squares. When these
points exist between NDDP points it is mainly because of
shadow fading caused by obstacles, in addition to walls, that
suddenly attenuate the DLOS path significantly. When the
UDP points exist subsequently one after the other then the
walls are the main contribution to the loss of the DLOS path.
It is interesting to note how UDP scenarios are not localized
only to a certain region or corner of the floor plan, but rather
they exist in “spots” strengthening the notion that the DLOS
path can be lost in locations where system designers might
have not predicted because of additional obstacles apart from
the walls. The measurement database is used in analyzing the
performance of different estimation algorithms in those
different multipath conditions. Including the earlier
measurements, a total of 256 measurements of which 71, 185,
88, 110 and 58 are LOS, OLOS, DDP, NDDP and UDP
respectively.

V. BEHAVIOR OF ALGORITHMS IN DIFFERENT
ENVIRONMENTS

In this section, the accuracy of TOA estimation is
examined for traditional and super-resolution algorithms in
different indoor environments.

A. Performance in LOS versus OLOS

Comparing the two different environments, the
performance of an indoor geolocation system varies
substantially. The absence of any significant obstructions in
the DLOS path provides LOS scenarios with an advantage in
terms of mean of ranging error. The significant difference
between them is apparent. The obstruction of the first path in
OLOS causes substantial error when compared to LOS case.
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Figure 3. Mean and STD of ranging errors for LOS using different TOA
estimation algorithms. The vertical lines corresponds to plus and minus
one STD about the mean.

For instance, at 20 MHz OLOS suffers a mean error of 10.7 m
while LOS has an error of 2.9 m. As the bandwidth increases,
LOS error approaches zero and in the case of 160 MHz it is
0.2 m while OLOS still exhibits a significant 4.1 m error.

The performance of the three TOA estimation algorithms
IFT, DSSS and EV/FBCM, is compared for two different
scenarios and several bandwidths. In LOS environment, the
performance of the algorithms in terms of mean of ranging
error is very close to each other. Figure 3 illustrates mean and
standard deviation values for the three algorithms in different
bandwidths. At lower bandwidths, EV/FBCM performs
slightly better than IFT but almost the same as DSSS. At
higher bandwidths, the distance error approaches zero and
there is no significant advantage for either algorithms. In
OLOS scenario, the first path suffers attenuation from walls
and other obstructions. As a result the DLOS path is rarely the
strongest and that introduces problems for detection. This is
shown in Fig. 4 where the distance error for all the algorithms
is worst than the LOS case. The EV/FBCM algorithm
significantly improves the TOA estimation and, in addition, it
outperforms the other conventional algorithms as evident from
the figure. As a result, in obstructed conditions more complex
TOA estimation algorithms provide means to reducing the
error to an acceptable level. On the other hand, use of those
algorithms does not provide significant improvement to the
TOA estimation in LOS environment.

In general LOS cases are composed mainly of DDP
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Figure 4. Mean and STD of ranging errors for OLOS using different
TOA estimation algorithms.

47



Mean of ranging errars (m)

L I L . . L I L
0 20 40 60 80 100 120 140 160 180
bandwidth (MHz)

Figure 5. Mean and STD of ranging errors for DDP, NDDP and UDP
using IFT algorithm.

scenarios. OLOS is composed mainly of NDDP and UDP
scenarios.

B. Performance in DDP, NDDP and UDP

With the loss of DLOS path, UDP causes major problems
for accurate TOA estimation. As a result, the mean and STD
of the distance error are expected to be significant when
compared to other cases such as DDP or NDDP. Figure 5
shows the mean and STD of the ranging error for UDP
compared to DDP and NDDP using IFT algorithm. It is clear
that the mean of ranging error for UDP is substantially larger
than the two other cases. In fact at 20 MHz, UDP has a mean
error that is 5 times that of DDP and 1.5 times that of NDDP.
As the bandwidth increases UDP continues to exhibit
significant error values. For example at 160 MHz the mean of
distance error for UDP is almost 7 meters while DDP is a
mere 0.29 meters. It is important to note that the accuracy of
TOA estimation is substantially degraded when a receiver
moves from a DDP position to an NDDP or UDP. As will be
discussed later, better TOA estimation algorithms reduce
average distance error but have limitations for UDP. The loss
of the DLOS path creates a situation where a large distance
error is unavoidable even with an increase in the bandwidth of
the system.

With the second main classification, similarly, the
effectiveness of the algorithms is different in each condition.
Figure 6 shows a measurement sample of a DDP channel
profile at 40 MHz illustrating the performance of the three
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Figure 6. Measured DDP profile obtained with the three estimation
algorithms at 40 MHz.
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Figure 7. Mean and STD of ranging errors for NDDP using different
TOA estimation algorithms.

algorithms. The vertical dash-dot line is the expected TOA.
Notice that the DLOS is detected successfully for the three
algorithms. EV/FBCM views the time domain channel profile
with a higher resolution and thus it provides better accuracy in
detection.

In NDDP Fig. 7 shows that EV/FBCM algorithm performs
significantly better than the other two algorithms. The main
reason is that it has the ability to view the channel profile with
higher resolution. In this category the first path usually
combines with the subsequent paths and forms a cluster. The
conventional algorithms detect the peak of the cluster as the
DLOS path and hence the TOA. This erroneous detection
causes serious problems for TOA estimation. The higher
resolution of the EV/FBCM algorithm “splits” the cluster and
provides other paths not detected conventionally. In some
cases, the algorithm detects the DLOS path; in other the
second or even the third is detected. Regardless of the path
detected, Fig. 7 shows that on average EV/FBCM exhibits
lower mean of ranging error when compared to the other
algorithms.

The performance of EV/FBCM in this scenario can be
justified by examining Fig. 8, which shows a typical NDDP
profile. The vertical dash-dot line is the expected TOA and it
is clear how both the IFT and the DSSS are unable to detect
the correct path. However EV/FBCM resolves the cluster and
reduces the TOA error by detecting a closer path and in this
case it actually detects the first path. Overall it is true to say
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Figure 8. Measured NDDP profile obtained with the three estimation
algorithms at 40 MHz.
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Figure 9. Mean and STD of ranging errors for UDP using different TOA
estimation algorithms.

that in NDDP conditions EV/FBCM provides the best
performance in terms of mean of ranging errors.

In UDP scenarios, EV/FBCM provides an advantage
compared to the other algorithms. Although the DLOS path
does not exist, nevertheless, EV/FBCM is expected to perform
better than the other algorithms. Figure 9 shows the mean and
STD of ranging error for UDP conditions. On average, the
EV/FBCM outperforms the other algorithms and exhibits
lower error even at higher bandwidths. By examining a
measurement sample of a UDP profile, it is possible to see
how the three algorithms compare. Figure 10 shows a
measured UDP case with the absence of the first path. It is
clear that EV/FBCM detects a closer path and improves the
TOA estimation when compared to IFT and DSSS. The
weakness of the DLOS path makes it difficult to resolve the
multipath and detect it. As a result, the UDP condition
introduces unavoidable errors and regardless of the bandwidth
or the estimation algorithm used, the positioning system will
exhibit substantially large errors. This degraded performance
requires that in the deployment of an indoor geolocation
system care must be taken to avoid coverage areas with UDP
conditions. This will further reduce the error and enhance the
accuracy of TOA detection and estimation.

VI. CONCLUSION

In this paper the behavior of TOA estimation algorithms and
the effect of different multipath conditions have been analyzed.
A measurement campaign targeted at gathering UDP indoor
channel profiles helped in establishing a comprehensive
database for statistical analysis in different multipath
conditions. OLOS scenarios exhibit substantial TOA
estimation errors compared to LOS. The algorithms are more
effective and indeed necessary in OLOS. In DDP the
EV/FBCM did not provide any advantage in the TOA
estimation when compared to IFT and DSSS. NDDP scenarios
introduce a larger margin of error when compared to DDP and
can create significant inaccuracies in TOA estimation. It is
possible to see that in this case resolving the multipath and
detecting the DLOS path is achievable with EV/FBCM as it
offers the best performance in this category. UDP showed the
worst algorithm performance due to loss of the first path.
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Figure 10. Measured UDP profile obtained with the three estimation
algorithms at 40 MHz.

Increasing the bandwidth of the system can improve the
accuracy of TOA estimation. However with the unfavorable
UDP condition this has limitations. More importantly, the
substantial errors introduced by UDP conditions are
unavoidable even with increasing the bandwidth of the system
and using complex TOA estimation algorithms.
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Abstract - In this paper, the results of measurements to
characterize the radio channel for geolocation applications
are presented. Measurements were made at 1 GHz, 500 MHz,
90 MHz and 60 MHz, in three different environments —
commercial, office and residential areas - representative of
SUO/SAS scenarios. The characterization of the radio
channel is provided through the Cumulative Distribution
Function (CDF) of the relative received power and the errors
in estimated distances based on the first and strongest paths
extracted from the channel impulse responses (CIR). These
results are used to evaluate the corresponding performance of
a RAKE type receiver that can extract the first path and a
traditional type receiver that locks onto the strongest signal.

L. INTRODUCTION

With the success of wireless information systems the
possibilities of the radio spectrum for applications which are
not primarily for telecommunications are being evaluated.
Terrestrial based radio geolocation systems are gaining
interest- in civilian applications such as intelligent
transportation systems, public safety (enhanced 911 services)
[1], [2], [3], and in military applications such as those
envisioned in the Small Unit Operation Situation Awareness
Systems (SUO/SAS) [4], where the location of the
warfighters must be known to improve tactical deployment
and safety of the soldiers. These new applications involve
defining the location in urban and indoor areas where
traditional geolocation solutions such as the Global
Positioning System (GPS) [5] are unsuitable due to the harsh
multipath radio channel conditions.

The wideband measurements and modeling of the radio
channel which are available for telecommunication
applications [6] are not adequate to evaluate the performance
of geolocation systems since their main objective was to
determine the relationship between distance and total
received power to provide coverage predictions, and to
estimate the multipath delay spread of the channel to evaluate
the data rate limitations of the receiver. New measurements
of the radio channel are needed to determine crucial
geolocation parameters such as the relative power and time of
arrival (TOA) in the signal arriving from the Direct Line of
Sight (DLOS) path and in the signal arriving from the other
paths [7], [8]. With this new characterization, the ranging
accuracy of current systems can be evaluated and improved
designs can be developed.

In this paper, the results of measurements to characterize the
radio channel for geolocation applications are presented. The

0-7803-5538-5/99/$10.00 © 1999 IEEE

measurements  were conducted in three different
environments - commercial, office and residential areas -
representative of SUO/SAS scenarios. They were made at
four different center frequencies using the same locations to
estimate the benefits of using one frequency instead of
another. A total of 1440 radio channel impulse responses
were processed to extract the relative power and TOA of the
first detected and strongest. paths to characterize the radio
channel. The results of this characterization are given in the
form of two CDFs: The CDF of the relative received powers
in the two paths, and the CDF of the error in estimating the
distances using these paths. To illustrate the effect of center
frequency, the curves are given for all four frequencies.

The results of characterization are also used to evaluate the
performance of a RAKE type receiver with same dynamic
range, sensitivity, and bandwidth as the measurement system
which would detect the first path and of a traditional type
receiver that would lock onto the strongest signal.

II. MEASUREMENT DESCRIPTION

Magpnitude and phase measurements of the radio channel
were made at four different center frequencies of 1 GHz, 500
MHz, 90 MHz and 60 MHz with bandwidths of 200 MHz,
200 MHz, 100 MHz and 50 MHz respectively, based on the
network analyzer system described in [9], {10]. For 1 GHz
and 500 MHz center frequencies, quarter wave monopole
antennas with rectangular ground plane were used, while for
center frequencies of 90 MHz and 60 MHz, a broadband
biconical antenna specified for 20 MHz to 300 MHz
operation was used.
The measurements were made at three different sites
representative of SUO/SAS scenarios. Norton company is a
manufacturer of welding equipment and abrasives for
grinding machines and the building can be described as a
huge open manufacturing floor with heavy metallic
machinery and steel sheet external walls with small metallic
windows close to the ceiling. Fuller Laboratories is a modern
office building with external walls made of brick with some
aluminum siding on two sides, metallic window frames and
doors. Inside the building there are several laboratory rooms,
various offices, lecture halls, and classrooms with internal
walls made of sheetrock. Schussler house is a fairly big
residential house with wooden exterior walls and sheetrock
interior walls. The house is however very old and some
portions of the external walls are made of stone. Inside, there
are several furnished rooms on the order of a few meters.
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For each site, four consecutive snapshots of the radio channel
were taken at one given location. The locations were
distributed to include indoor-to-indoor, outdoor-to-indoor,
and outdoor-to-second floor radio propagation conditions.
The same locations were used for all center frequencies and
were reported on the corresponding floorplans of the sites so
that the physical distances between the transmitting and
receiving antennas could be estimated.

The frequency domain measurement data was corrected to
remove the effects of system and antennas gains and delays.
For each location and each center frequency, four channel
impulse responses were produced corresponding to the four
snapshots by performing an inverse Fourier transform on the
frequency response windowed by a Hanning window. To
evaluate the characteristics of the radio channel, the multipath
profile of each CIR was constructed using a peak detection
algorithm that would associate a tap (magnitude and delay) to
each of the peaks in the CIRs. To avoid associating a tap with
noise or other unreliable data, only taps above a given
threshold were considered.

1. MEASUREMENT RESULTS

For geolocation applications the Direct Line Of Sight
(DLOS) path is the most important parameter since its TOA
is directly proportional to the physical distance between
transmitting and receiving antennas. However, since the
measurement system is not ideal — it has finite bandwidth,
finite dynamic range, and introduces noise — the DLOS path
can never be extracted perfectly from a measurement. The
most reasonable approximation is the first detected path in
the profile above a given noise floor. The other paths are also
important since they can affect the TOA and amplitude of the
first path. The most significant of these paths is the strongest
path that is commonly detected in receivers locking onto the
strongest signal. Therefore, we propose to characterize the
radio channel by focusing on the amplitude and
TOA/distance of the first and strongest paths as shown in
Figure 1.

Ps

Ep
hild Ep: inaccuracy of physical distance
measurement
Ef: Error in first path associated
with RAKE receiver
Pt Es: Error in the strongest path
associated with traditional rgcelver

Ef

Lenl

letES .l

Dp Dt Ds Distance {time)

Dp: Physkcal distance (expected TOA)
Dt: Estimaled distance from first path TOA
Ds: Estimated distance from strangest path TOA

Pt Power In the first path
Ps: Power In the strongest path

Figure 1: Important geolocation parameters

The expected TOA/distance of the measured physical
distance between transmitter and receiver is the reference
parameter for evaluating the performance of the geolocation
systems. One should note that the measured physical distance
is not immune to errors.

In the remainder of this paper, the characteristics of the first
and strongest paths will be presented and their effect on the
performance of a RAKE and traditional type receivers
discussed.

The first characteristic to be given is the CDF of the received
power in the first and strongest path at the four center
frequencies as shown in Figure 2. At 1 GHz, the received
power in the first path is approximately between —115 dB and
=50 dB, at 500 MHz between —110 dB and —40 dB, at 90
MHz between —90 dB and -20 dB, and at 60 MHz between -
85 dB and -10 dB. There is approximately a 20 dB increase
in signal strength per decade of reduction in center frequency
and the lowest center frequency provides the highest received
power levels. For strong received powers (shorter distances
between TX and RX) the first path is also the strongest path
and for weaker received powers (larger distances between TX
and RX) the probability of having a path stronger than the
first path increases. From the curves, the separation between
the received power in the strongest path and the first path can
exceed 10 dB and as a result, the dynamic range of a RAKE
type receiver will become an issue.

In order to quantify the errors in estimating the distances
Figure 3 provides the CDF of the error between the physical
distance Dp and the distance Df based on the first path and
the distance Ds based on the strongest path at the four center
frequencies. For RAKE type receivers detecting the first path
the probability of making an error less than 10 feet is 91.1%
at 1 GHz, 85.6% at 500 MHz, 60% at 90 MHz, and 43.3 % at
60MHz. For traditional receivers locking onto the strongest
signal the probabilities become 44.4% at 1 GHz, 41.1% at
500 MHz, 45.6 % at 90 MHz, and 22.2 % at 60 MHz.
Therefore, the traditional type receiver would be quite
unsuitable to estimate the distances to 10 feet accuracy in
urban and indoor areas. On the other side, the RAKE receiver
is a reasonable choice. When using the higher center
frequencies where wider bandwidths are available the lowest
errors between the physical and estimated distances are
obtained. On the other hand at higher frequencies, the relative
received powers are smaller and limit the range of the RAKE
receiver.

The main problems limiting the ranging accuracy of the
RAKE type receiver are illustrated in Figure 4. It shows two
main situations where the detected first path is not the DLOS
path. In the first situation, the path joining the transmitting
and receiving antennas must cross many obstacles such as
walls and metallic objects, and the resulting DLOS path is so
attenuated that it falls below the measurement system noise
floor and can not be detected. In this situation, the detected
first path will correspond to the shortest indirect path where
several bounces have occurred before reaching the receiver.
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This case can produce large errors since the TOA of this first
detected multipath has no apparent relation to the DLOS path.
In the second situation, the limited bandwidth of the system
makes it impossible to distinguish the DLOS path from the
first few other paths arriving at the receiver. In this case the
detected TOA of the first path will correspond to a
combination of the TOAs of the DLOS path and the first
other paths. The errors in this case should be reasonable since
the TOA detected is strongly dependent on the DLOS path.

IV. CONCLUSION

In this paper, the results of measurements to characterize the
radio channel for geolocation applications were given. The
measurements were taken in commercial, office and
residential areas at 1 GHz, 500 MHz, 90 MHz, and 60 MHz,
with bandwidths of 200 MHz, 200 MHz, 100 MHz, and 50
MHz, respectively. The important parameters in the channel
impulse responses for geolocation applications were shown to
be the amplitude and TOA of the first and strongest paths.

The results of characterization were provided though two
CDF and were used to evaluate the performance of a RAKE
and a traditional type receivers. From the CDF of the relative
received power in the two paths it was seen that the received
power in the first path would be smaller or at most equal to
the power in strongest path. Therefore; the RAKE type
receiver will require larger dynamic range in order to track

the direct path. It was also seen that at lower frequencies, the
received power is higher.

The CDF of the error in estimating the physical distance gave
some measure of the errors committed by the RAKE type
receiver and the traditional type receiver that locks onto the
strongest path. Clearly, the traditional type receiver is not
suited to provide distance estimations within 10 feet
accuracy in urban and indoor areas. In contrast, the RAKE
receiver can satisfy this requirement over 90 % of the time at
the center frequency of 1 GHz. The errors in estimating the
distances committed by the RAKE receiver are mainly due to
the non-detectable DLOS path situations where the direct
path falls below the receiver noise floor, and to the non-
distinguishable DLOS path situations where the limited
bandwidth of the receiver results in large time pulse widths
making accurate detection of the direct path difficult.
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Abstract

Emerging geolocation applications require the
accurate detection of the direct line-of sight (DLOS)
path in order to correctly estimate the range between
a transmitter and a receiver. A mathematical analysis
of the probability of detecting the DLOS path with a
given indoor radio channel model is provided and
verified with simulations. Analytical results for the
JTC indoor office channel model C are compared
with the results of ray tracing in Atwater Kent Labs at
WPL

1. Introduction

Over the last few years, indoor wireless
communications has gained popularity in the form of
personal communication services (PCS) for voice
and wireless local area networks (WLANS) for data
communications [1] resulting in several activities to
characterize the indoor radio channel for both
narrowband and  wideband communications
applications [2]. In order to characterize the indoor
radio channel for communications, the path loss
suffered by the signal in traversing the distance
between transmitter and receiver and the root mean

square (RMS) multipath delay spread (7, ) are
important [2]. The path loss provides an idea of the
signal coverage and T, provides an estimate of the

maximum possible data rate that can be supported
over the channel.

Position location applications are emerging in the
market that need a different characterization of the
indoor radio channel [3]. The DLOS path corresponds
to the straight line connecting the transmitter and the
receiver even if there are obstructions like walls in
between. The relative power and the delay of the
signal arriving via other paths, the channel noise and

0-7803-5565-2/99/$10.00 © 1999 IEEE
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interference influence the detection of the DLOS path
and also the error in estimating the distance (range)
between the transmitter and the receiver. A
preliminary framework, channel measurements and
simulations, and statistics relevant to geolocation
applications were considered recently [3,4]. In this
paper, we provide a mathematical statement of the
problem and analysis of the detection of the DLOS
path in indoor areas for channel models that are often
used in the literature for telecommunications
applications. These models by themselves are
insufficient for completely characterizing the radio
channel for geolocation applications. However, the
analysis in this paper with some additions may be
employed to develop models that contain information
relevant to both geolocation and communications
applications. In Section 2, we describe the geolocation
problem and define the relevant parameters that are
involved. Section 3 provides the statement of the
problem and the analytical solution. Section 4
describes some channel models that are employed
indoors for PCS applications and provides the results
of the analysis for these models and verifies the results
with simulation. A comparison of these results with
the results of ray tracing is also provided to emphasize
the drawbacks in these models as far as the
geolocation problem is considered. Section 5
concludes the paper with future directions and efforts.

2. The Geolocation Problem

Let a sample channel impulse response be given by:

L-1
W0y =Y o8¢ -1)exp(jo) (D

=0
where the amplitude, delay and phase associated with
the I-th path in the L path channel are given by o 7,
and ¢, respectively. Here we assume that 7; < 7, for i
=0, 1, 2, ...L and that 7y = dy... /c always where di. .
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refers to the distance between transmitter and receiver
in meters and ¢ = 3x10® ms™ is the speed of light.
This means that the DLOS path always exists (but
may or may not be detectable). The amplitude
associated with this path is op. The TOA of the
DLOS path corresponds to 7, and an error in
estimating it results in a corresponding error in dix .

We introduce two parameters for obtaining the
relevant statistics. We refer to the minimum signal
strength in a given path that the receiver can detect as
the receiver sensitivity Z. Thus the signal power in
the DLOS path must be larger than Z for it to be
detected correctly. This simplified criterion implicitly
assumes that a particular signal level will be
sufficient for correct detection without explicitly
investigating the effects of channel noise which will
be random. This is because the emphasis here is on
modeling of the radio channel rather than receiver
design or performance. The effect of phase is also
ignored here as it manifests only in receiver
performance. In order for the receiver to identify the
DLOS path, the signal power in the strongest path
must not be larger than the signal strength in the
DLOS path by more than the receiver dynamic range
K. We define the quantity

24L-1
R, = {max(a,. )iso } @

which is the ratio of the ratio of the signal strength in
the strongest path to the signal strength in the DLOS
path, as another performance measure. It should be
observed here that 9, can never be negative. We can
thus provide the two conditions for correct detection
of the DLOS path as:

Py, 25

R, <R

and

3

where P, =20log,,(c,) is the signal power in the

DLOS path and %K, is defined above. If the signal
arriving via the DLOS path does not satisfy (3) we
assume that the signal arriving via the next earliest
path that does satisfy (3) will be detected. If this path
is the m-th path, 1<m<L-1, the receiver

erroneously estimates the TOA as 7,. The error in
predicted distance will be €, =(t,, —7;)Xc. The

analysis that follows deals only with amplitudes and
in terms of amplitude, we let §° = £, p* = %, and p,’
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= R, while retaining the same names as sensitivity
and dynamic range for § and p respectively.
3. Problem Statement and Solution

The indoor radio channel model (without the phase
term) is given by:

L-1
A=Y adt-1) - @
i=0

The multipath amplitudes are given by «; and the

delays are given by 7,. The amplitudes «; are
independently Rayleigh distributed with mean local
strength  E {af}:ZO'f. The probability density
function of ¢; is given by:

—ry?
ﬁ(a,.)=i’%exp( % )a,.zo Q)
c 20;

i i

When =0, the parameters correspond to the DLOS
path. In this analysis, the multipath delays are assumed
to be fixed. These assumptions suit the JTC model for
instance where the mean local strengths of the paths
and fixed path delays are specified.

In detecting the DLOS path, its signal strength and the
signal strength in the remaining L-1 paths determine
whether or not the DLOS path is detected in addition
to the receiver sensitivity and signal-to-noise ratio.
The DLOS path can be detected if it is above the noise
and the strengths of none of the other paths exceed its

own by more than the receiver dynamic range p. In
particular, if the effects of noise are neglected and it is
assumed that the receiver can detect a path as long as
its local mean strength is above the sensitivity, we can
formulate the problem as follows.

P,(DLOS) = Pr{o, < pa,, a,< pa,..

o, S pa,,o, 2S5} 6)

Since each of the random variables in (6) is
independent, we can write this probability as follows.

P,(DLOS)= [ fo(@)[™ f,(@)da,

POy P&y
J:) fr(a,)da, - '_L Jrato da, da, (1)
This can be simplified further as:

(; L-1 p- 2
Js —e p( 202 U [l exp( 207 )}dao (8)
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The closed form of this integral can be expressed as
follows:

P,(DLOS) =exp[_Sﬁ ]_
20

0
-1

Z.——;_IT—’TCXP _52 11 + p~7 +
iw1l+p'o,/o; 20, 20;

Lt L1 2 2
ZZ P zl 2 zeXP_SZ "17""")_2"'—07
i=Ujsivtg P ‘:o + p go 20, 20; 20;
i j
1 1 L-1 2

— — exp _Sl[ - + p Z] (9)
1+5 2% 26, =20,

= o}

u

+oeet (1)

When the receiver sensitivity can be assumed to be
zero (i.e. it can detect a signal no matter how small it
is, implying an infinite SNR), the exponential terms
become one and the probability of detection is
simply a function of the ratios of the local mean
signal strength of the DLOS path to the local mean
signal strength of the other paths multiplied by the
receiver dynamic range.

4. Results for the JTC Model

The Joint Technical Committee on PCS (JTC) model
[2,5] has been widely used in simulating the indoor
radio channel for PCS applications. In order to
incorporate the large amount of variability of delay
spread within a given environment, three multipath
channels are defined for each indoor radio
environment. Channel A is the low delay spread
case, channel B is the median delay spread case, and
channel C is the high delay spread case. Three such
models are specified for each of indoor residential,
office, and commercial (e.g. factory or shopping
centers) environments. The tapped-delay line model
specifies the local mean strength of each of the

. 2
multipath components, namely 20, as well as the

delay associated with the multipath. These delays are
discrete and are usually multiples of 25 or 50 ns.

4.1 Infinitely sensitive receiver (S=0)

Figures 1-3 show the resuits obtained for the JTC
models for indoor residential, office and commercial
environments  respectively with analysis and
simulation for the case when S=0 (signal-to-noise
ratio is infinite). The analytical results are derived

from (9) by using appropriate values for 20 ,2 and L.
The values of L (number of paths) range between
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three and eight for the various JTC models. In order to
simulate the results, twenty thousand channel profiles
were generated using the JTC model parameters in
each case. Each model was examined to determine
whether the DLOS path can be detected for various
values of p’ ranging from 10 dB to 40 dB. The results
are shown as discrete points (diamonds) in these
tigures. The results of simulation match the results of
analysis quite closely.

The channel model C for residential and the channel
model B for commercial indoor environments are the
same (see tables in [2]). In these models, the local
mean strength of the DLOS path is smaller than the
local mean strength of one of the other multipath
components. Consequently, the probability of
detecting the DLOS path for these two instances is the
smallest for all receiver dynamic ranges and this can
be seen from the figures.

4.2 Finite receiver sensitivity (S > 0)

When the receiver has a finite sensitivity, the
performance will be worse since the probability of
detection will be multiplied by exponential terms that
are less than one. Since the JTC multipath models are
normalized, meaningful results cannot be obtained for
arbitrary values of S. The path loss suffered by the
signal will have to be taken into account and
multiplied with the local mean strength of the
multipath components and only then can the receiver
sensitivity be applied. For a given building, the JTC
path loss model provides the path loss as a function of
distance d [2]. In particular, for a single-floor office
buliding, the path loss is given by:

L, =49 + 30log(d) (10)

with a standard deviation of 10 dB associated with
lognormal fading.

In [3,4], channel profiles from ray tracing simulations
(with a floor plan whose parameters were adjusted so
that the ray tracing simulations matched measurement
results at selected points in the first floor of Atwater
Kent Labs at WPI) were used in obtaining statistics
useful for geolocation. Around 1700+ receivers were
placed in a grid all over the building and the channel
profiles observed for a single transmitter (with a
transmit power of 27 dBm, center frequency 1 GHz,
placed at the center of the building) were considered.
Atwater Kent can be categorized as a harsh office
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building and Channel C of the JTC indoor office
model is suitable for comparison.

Ray tracing channel profiles are examined to
determine the probability of detecting the DLOS path
for different receiver sensitivities S° and dynamic
ranges p’. The results are shown in Figures 4 and 5.
Analytical results are obtained using (9) and (10) for
the JTC indoor office channel model C and they are
shown in Figures 6 and 7. The path loss is applied
with a correction of 27 dB to account for the transmit
power used in thr ray tracing simulations. The
average distance (21m) between transmitter and
receiver for the 1700+ receivers in the ray tracing
simulations is used in (10). The former plot in each
case is a two dimensional plot of the probability of
detection as a function of p° with % as a parameter.
The latter plot is a three dimensional plot showing the
variation of the probability of detection as a function
of both p” and §°.

The results are comparable in that the order of
magnitudes and general shapes of the curves are
similar. The probability of detection with ray tracing
is the more accurate result and it shows a slower
variation with p’. The probability of detection
determined through analysis is somewhat optimistic
over all values of p° and S°. The reasons for this are
manifold. A single distance is used in the analysis
whereas in reality the probability of detection
becomes worse at larger distances. The JTC model in
general is not designed for geolocation applications
and requires modifications to include information
relevant to geolocation. As discussed earlier,
Pp(DLOS) is dependent upon the ratios of the local
mean strengths of the multipath components. While
the JTC models match the RMS multipath delay
spreads to those observed with measurements, they
do not consider these ratios in developing the model.
Also, the analysis here does not include the effects of
lognormal fading specified in the model that may
further degrade the probability of detection bringing
it closer to the values obtained through ray tracing.

5. Conclusions and Future Work

An analysis of the probability of detecting the DLOS
path in a discrete multipath Rayleigh fading channel
is considered. This probability is dependent upon the
receiver sensitivity and dynamic range and for high
sensitivities, it is a function of the ratios of the signal

strength in the DLOS component to the signal strength
of the other components weighted by the dynamic
range. Current multipath channel models do not
address the issue of detecting the DLOS path and need
modifications that provide this information as well. In
addition to detecting the DLOS path, the probability of
detecting some other path if the DLOS path is NOT
detected becomes important to determine the error in
range estimates that can occur in a system. This
problem is under study at CWINS, WPL Models such
as those developed by JTC ignore the arrival times
keeping them discrete and fixed. Modifications that
focus on this issue are also being investigated.
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Space-Time Measurement of Indoor Radio
Propagation

Robert D. Tingley Member, IEEEand Kaveh Pahlavarfrellow, IEEE

Abstract—Most existing techniques for indoor radio propa- Design assessment and optimization of existing applications
gation measurement do not resolve the angles from which signal have been enabled by a collection of channel modeling and sim-
components arrive at the receiving antenna. Knowledge of the \,5tjon techniques that are geared toward predicting the achiev-
angle-of-arrival is required for evaluation of e_volvmg systems able coverage and data rate [6], [17]. Recently, new applications
that employ smart antenna technology to provide features such .g o b : y'. pp
as geolocation, interference cancellation, and space-division have been identified that require a more detailed model of the
multiplexing. This paper presents a novel technique for the joint underlying propagation effects. Following a recent FCC ruling
measurement of the angles, times and complex amplitudes of intensive development has begun on wireless E-911, which will
discrete path arrivals in an indoor propagation environment. A 55y/ide the emergency call center with the estimated location

data acquisition system, based upon a vector network analyzer . . .
and multichannel antenna array is described, together with its of the caller [2]. At the same time, indoor positioning systems

use to collect channel measurement matrices. The inherent error are appearing that allow tracking valuable assets throughout a
sources present in these measurement matrices are investigatedarge facility [1]. As the reliability of these systems becomes
using a compact indoor anechoic range. Two signal processing well known, their use will inevitably expand to include tracking
algorithms are presented whereby the channel parameters may ot narsonnel in potentially dangerous situations, such as fire

be estimated from raw measurements. In the first approach, fioht | f t official d milit |
an optimum beamformer is derived which compensates for Ighters, law entorcement officials, and military personnel en-

systematic errors in the data acquisition system. This approach gaged in urban conflicts [2].

features very low computational complexity, and delivers modest ~ Both adaptive interference cancellation and adaptive space
resolution of path components. The second algorithm is based division multiplexing are being studied for incorporation into
upon the maximum likelihood criterion, using the measured nq neyt generation of commercial wireless systems. These tech-

calibration matrices as space-time basis functions. This algorithm . . . . -
provides super-resolution of all path parameters, at the cost of N'quésare based upon the notion that the desired and interfering

increased computation. Several example measurements are givenSignals emanate from diStiDCt .dire(.;tions, an_d as such, may be
and future directions of our research are indicated. separated based upon their direction-of-arrival. However, this

Index Terms—Array signal processing, calibration and verifica- ViEWpOint does not consider that, except in the simplest of envi-
tion, high resolution signal processing, indoor radio propagation, rons, both the desired and interfering signals arrive from many

propagation measurement. directions, as affected by the properties of the radio channel.
I. INTRODUCTION B. Background
A. Motivation The first indoor radio measurements to include angle-of-ar-

HE CONCEPT of wireless office information networkgdival information were reported by Lo and Litva in 1992 [7].

was introduced in the early 1980s, with the first commer-ney eémployed a measurement system wherein a 950 MHz car-
cial products appearing in the early 1990s. Following complg€r was phase modulated by a 40 Mb/s pseudonoise sequence.
tion of the IEEE 802.11 Standard, interoperable wireless LAR2ch data set was acquired by moving the receiving element
(WLAN) products have begun to appear. Sales of wireless darough a succession of fo.ur points on_the radius of a circle, as
fice products exceeded half a billion dollars last year, and a¢!l s to the center. Bearing information was calculated from
expected to surpass five billion dollars in the first few year@aCh data setby considering the five points to constitute a simple
of the new millennium. Today Internet access, cordless te@@y, and applying standard beamforming techniques. The au-
phone, wireless security, headphone, speaker, appliance, theys do not prowde the system specifications, _however k_)ased
lighting control systems all form important segments of the idPon the design parameters we expect a spatial resolution of
door radio market. The market for all of these applications hd§"» @nd a temporal resolution of about 25 ns. _
grown rapidly in response to consumer demand, and has botf] he array measurement system was improved by Rosdi

tomated movement of the receiving element through the various

. . , positions. This system also developed bearing estimates using
Manuscript received August 17, 1999; revised July 24, 2000. . . -
R. D. Tingley is with the Charles Stark Draper Laboratory, Cambridge, v&tandard beamforming techniques. However, since the measure-
02139 USA (e-mail: rtingley@draper.com). ments in each data set are collecteddnrtrements rather than
K. Pahlavan is with the Center for Wireless Information Network Studiege increments, the system features much finer angular resolu-

Department of Electrical and Computer Engineering, Worcester Polytechnic |n- L . L
stitute, Worcester, MA 01609 USA (e-mail: kaveh@ece.wpi.edu). fion. Thg authors report achieving resolution of 40 ns in time,
Publisher Item Identifier S 0018-9456(01)01650-3. and 10 in angle-of-arrival.
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The highest-performance space-time characterization syst
presented to date is due to Sperstaal. [9], and may be viewed
as an extension of the frequency-domain channel sounder
Howard [6]. The new system replaces the omnidirectional r
ceiving element employed in [6] with a 60 cm parabolic dist
mounted atop a computer-controlled turntable. Each data se
acquired by sweeping the network analyzer, followed by dis
rotation through 2, and repeating this sequence until one cycl
has been completed. The authors report achieving spatial re
lution of 6°, and temporal resolution of 3 ns. Since each data ¢
requires approximately 20 min to acquire, due to setup, dish |
tation, and the large number of constituent measurements [1
it may prove difficult to ensure that all constituents are derive
from the same underlying propagation scenario. Perhaps m
important, since the beamwidth of a parabolic antenna runs
versely with the frequency of operation, an antenna of neal
2 m diameter is required to maintain the same resolution
2.4 GHz.

This paper is organized as follows. In Section Il, the constru
tion and calibration of an eight-element circular array are pr
sented. In Section Ill, the spatial filter periodogram algorithr
is developed, which provides moderate resolution path para
eter estimates. In Section 1V, the discrete maximum likelihoc
algorithm is described, along with its ability to deliver high-res
olution estimates of all path parameters. Section V provides
comparison of the two algorithms and several sample meast
ments, and the paper is concluded in Section VI.

Fig. 1. Eight-element circular array.

1. DATA ACQUISITION SYSTEM . . L
Q a synthesized microwave source, which is swept from 2.35 to

A. Construction 2.55 GHz, and delivered to an omnidirectional transmit antenna
A data acquisition system which incorporates newly avaiff'rough @ 50-m run of double-shielded coaxial cable. A high-
able component technologies holds the promise for deliveriRgWer amplifier, located at the base of the transmit antenna,

several advantages relative to the existing systems. Among RRosts the signal to a level &f20 dBm. The transmit spectrum
advantages are a simpler setup and measurement processtiliercepted by the circular array, where it is amplified by a
to minimal component count, elimination of moving parts, an@W-noise amplifier, and applied to the receive channel of the
a reliance on off-the-shelf test equipment. At the same tinfeetwork analyzer. _

the acquisition period may be reduced such that the entire dat4 Standard laptop computer is used to control the mea-
matrix is acquired in less than the channel coherence time Srément setup. To begin acquisition of a data set, the laptop

final advantage is the development of a framework within whichVitches the array to the first element, sweeps the network
alyzer, retrieves the complex-valued transfer function data

to trade excess signal-to-noise ratio for improved resolution g‘ ! )
mating the acquisition system with subspace or parametric p 1), and stores the data to hard disk. The process is repeated

processing. Caution is necessary, however, to ensure that fiyethe remaining elements, until all eight transfer functions

array provides certain characteristics required by the post pfiveé been measured and stored. When configured for 101
cessing algorithms, such as shift-invariance. points and a predetection bandwidth of 3 kHz, a total of

To achieve these goals, the antenna array shown in Fig/20 MS is required to measure all eight elements and store
was constructed. The array consists of eight nominally-identidi corresponding data to disk. The total data acquisition time
quarter-wave monopole elements, mounted at a constant radiliy Pe further abbreviated by employing a larger predetection
and separated by one-third wavelength. The signal received®@fdwidth, measuring fewer points, or utilizing a network
each element is fed to an eight-channel switch by means of3@lyZer with faster internal signal processing.
short run of semi-rigid coaxial cable. The array also provides
power to the switch, and a digital interface whereby a persor%tl
computer may select the element under test. The internal conkt was discovered early in the development program that nu-
figuration of the array is shown in Fig. 2. merous sources of error are present which, left uncompensated,

The array serves as the receiving element of the data acdeid to degrade the accuracy of the results. Elements of the
sition system, as shown in Fig. 3. As in [6] and [9], measuradfray couple strongly with one another, as can readily be demon-
ments are conducted in the frequency domain, with the aid stfated either through a transmission measurement between ad-
an HP8753D vector network analyzer. The analyzer providggent elements, or by measuring the reflection coefficient of

60

Calibration



24 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 50, NO. 1, FEBRUARY 2001

transmit feedline, both amplifiers, and the remaining coaxial
runs necessary to complete the system. Armed with such a cir-
cuit characterization, subsequent eight-channel measurements
are adjusted such that they imply reference planes taken at the
base of each individual antenna element.

For the second portion of the calibration, the transmit antenna
and receiving array were assembled in a small indoor anechoic
range. The antennas were mounted atop turntables, and sepa-
rated by a distance of 3 m. All measurement gear and personnel
were located outside the chamber, in an effort to prevent the ad-
dition of spurious reflections. In this configuration, spurious ar-
rivals are attenuated by at least 30 dB relative to the line-of-sight
(LOS) arrival. A series of eight-channel frequency domain mea-
surements was conducted. Between each data set, the array was
rotated 5.625 in azimuth, relative to its previous orientation.
This measurement and rotation sequence was performed for one
complete revolution of the array, which resulted in 64 distinct
data sets given as

U, 1,m U1,2,m U1,8,m
U, = U2 1,m  U2,2.m (1)
U101,1,m U101, 8, m
wherem = 1,2, ---, 64. The indices are chosen such that

m = 1 corresponds toQ m = 2 corresponds to 5.625and

so forth. Thenth column ofU,, represents the frequency re-
sponse between the transmit antenna anathelement of the
receiving array. The magnitude &fq is presented in Fig. 4.
Note that the array elements are numbered in such a fashion that
Fig. 2. Array internal construction. the first element is sighted at @zimuth, although this selection
was purely arbitrary. The figure displays much higher attenua-

an individual element while adjusting the load placed on eithte'9n at the fifth element, which in this configuration is directly

of its immediate neighbors. Related to the coupling effect is2 poﬁ!t?dt.o theﬁanglg-o;—arrl\ll_al. This behavior is explained by
pose-dependent shadowing effect in which the power deIiverteg shielding effect cited earlier.

by an element varies strongly as the element’s relation to the

source bearing changes. In particular, as an element’s position !l SPATIAL FILTER PERIODOGRAM ALGORITHM
approaches counterpoise with the direction-of-arrival, its pPOWRr process Model

output drops markedly, due to shielding by elements which are - . .
blocking its “view” of the source. Still other effects are present,. In order _to famhtatg developmqnt of signal processing strate-
such as the finite dimension of the underlying ground plan%',es' the discrete arrivals model is augmented as

and imperfect knowledge of the relative positions and tuning of L

the array eIemgnt_s. In aggregate, thesg effects ensure that the h(t, 6) = Zﬁlem& (t—t, 0—6). @)
array characteristics may not be described by a simple array
factor, as customarily used to develop signal processing algo-
rithms [11]-[13]. In this formulation, thdth component of the impulse response

In addition to errors caused by the array construction and garives at the receiver delayed hyseconds, and from a bearing
ometry, numerous circuit and transmission line error sources aféd;°. I, such components are required to accurately represent
present. For example, it was shown that the phase mismatchthe- channel response, and each is scaled by a complex factor
tween switch channel pairs can be as high &sat®.55 GHz. 3;¢/%'. Although this model is generally well accepted, its use
Likewise, the amplitude mismatch between switch channel pagan be expected to pose several difficulties when applied to
can be as high as 1.5 dB. Both the amplifiers and the antermeaasured channel responses. First, since model components are
feedlines display a small but significant amount of frequengyurely impulsian, surface interactions of a frequency selective
shaping, and thus may not be considered trivial delay elememntature will not be well represented. In addition, since the eleva-

In order to provide the most generally useful results, systetion angle is not explicitly identified the model can be expected
calibration was divided into two portions. In the first portionto provide poor performance in the case of arrivals which are
the two-port parameters of each circuit element were measureadt coplanar with the array elements. Data collected in the field
This characterization included all eight switch channels, tlwwnfirm that the error accrued due to these effects is small, so
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8-Element
Receive Array
Transmit
Antenna O O O

8-Channel Switch

Laptop computer
50 m Double-
Shield Coax
Fig. 3. Measurement system block diagram.
" Element One o Element Two Before proceeding, note that new algorithms have been pro-
53_ ’ % ’ posed which estimate the parameters in (2) using extensions to
2 -50 W 2 -50 WW the well-known ESPRIT technique [11], [15], [16]. Although
§ § this approach operates on time domain data, and requires a good
2 60 o 60 estimate of the model order, neither of these requirements is
Y YR YTEY N T insurmountable. The real barrier to direct application is that
Element Three Eloment Four S|m_ple physical arrays do not_readlly con_form with the s_hlft-m-
@ 40 @ -40 variant data model assumed in the algorithm construction.
R REUNZ N a2l B VJ\//\«,\/\/J““ ) .
g -0 g 50 B. Algorithm Formulation
o o
5 -60 ﬁ -60 Rather than employ a conventional beamforming algorithm,
70 70 the collection of calibration matrices is used to form a least-
235 24 245 25 235 2.4 245 25 squares spatial filter. This approach has numerous benefits, in-
cluding improved resolution, lower sidelobes, and the automatic
Element Five Element Six removal of systematic errors in the array response [5]. In this
@ 40 g 40 procedure, we form the cost function
> )
2 -50 @ 50 p~r T N VN 101 8
o [=]
o0 = 53 () (3 v
14 /I\][/ 14 i#Fm l=1 \n=1 n=1
7035 24 245 935 24 245 25 (3)
' ' ‘ S which is minimized, subject to the additional constraint
Element Seven Element Eight
-40 -40
3 o 101 8
z .50 W\/W g -50 "‘v\/zvv/\/\/\fv-\/fv\ C(Wm Z Zul n, mWn, m Zuzn,m,wn m —-1=0.
a a =1 n=1
o .50 2 .60 _ o 4)
x © The cost function serves to minimize the array’s sensitivity
T 22 245 35 s 24 545 325 to energy from all directions except the desired, while the con-
straint guarantees a solution with a fixed, constant gain in the de-
Fig. 4. Example array calibration response. sired direction. This approach is very similar to the well- known

minimum-variance, distortionless response method [21], except
long as measurements are made in a conventional office erttiat in the present case, complete control over the sources guar-
ronment with both transmitter and receiver on the same floorantees that all energy arrives from the desired direction. As a
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100"

Ange, dagrass Tome, nae:

Fig. 5. Space-time impulse response of SFP technique.

result, the optimal solution does not contain deep nulls in theThe tap weight design algorithm is repeatedly applied, with
direction of strong interferers. The cost function and constraitite results conveniently collected in the form of the spatial filter
are satisfied jointly, using the method of complex Lagrange muhatrix

tipliers, outlined in [21].

The first step in the method is to combine the cost and con- WL Wiz ottt WM
straint equations to form thadjoint equation W — w:21 W22 § ' ®)
a m a m ' .
f(W ) + A C(W ) = 0. (5) weg1 WM
ow? ow?

m m

Performing the partial differentiation over each element of t jhemth column of W provides eight taps which serve to steer
9 P qﬁe array in the desired direction, while minimizing the energy

complex-valued tap-weight vector produces a system of ey o te from all other directions. Given an arbitrary measure-
tions of the form

ment matrix
101 8
Fk(Wm7 /\) = Z Zul7j7k u}k,j,nwn,m v1,1 vi,2 1,8
j#Em l=1 n=1 V2,1 V2,2
101 8 V= : . 9
* * _ . .
A ; U, m, k 221 U, m, kWn,m = 0 (6) V101, 1 V101, 8
= n=
wherek = 1, 2, -- -, 8. Since the constraint equation must als§€ Space-time impulse response is estimated as
be satisfied, we have .
H=FXVW (20)
101 8
Fo(wpm, A) = Z <Z ", n, mwnml) whereF is the inverse Fourier transform matrix, aXdserves
=1 n=1

as a window function which minimizes the sidelobes present

8 . . .

' <Z . w? ) _1—o0. 7 in the equwal_ent tlme_: response. The path parameter_s of (2) are

b, mTn,m computed by identifying the local maxima H, and noting the
angle, delay, and complex amplitude at which they occur. The

Taken together, a solution to these nine equations providgmtial and temporal resolution of the SFP algorithm is investi-

the optimal taps for the array processor, as well as the Lagramgaed in detail in [19], where it is shown to provide an average

multiplier A. Although (1)—(8) are linear in the independent varispatial resolution of approximately 3Gand an average time res-

ables, equation nine is quadratic in the array weights. As a m@ution of 7 ns. In Fig. 5, we present the magnituderbfor

sult, standard linear algebraic techniques, such as SVD, canaaingle arrival, as measured in the anechoic chamber. Promi-

be used to compute the solution immediately. An iterative solnently displayed are the spatial sidelobes which result from the

tion technique is described in [20]. use of the SFP formulation. 63
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IV. DISCRETEMAXIMUM LIKELIHOOD ALGORITHM requires(D x M)* evaluations, each of which requires the so-
While the SFP algorithm provides a simple method to egj_tlon of.anLth order_lmear syst_em. _Forasnuanon with 64 dis-
fe azimuths, 30 discrete arrival times, and 20 paths, the par-

timate the space-time impulse response from a measurem ﬁel search reauires 60 orders of maanitude more computation
matrix, it suffers from several limitations. The spatial resoll requi gnitu putati
an the serial search.

tion is strictly limited by the number and configuration of arra _ L . .
y y g Since the full parallel search is impractical for cases with

elements, and in the current design stands &t Bikewise, ; . . .
gbore than three to four discrete arrivals, early experimentation

the temporal resolution is given by the reciprocal of the swe i . . . o
bandwidth, and is approximately 7 ns. Both of these Iimitatior??ns'dered the serial approach. The first few paihs identified

are independent of the signal-to-noise ratio of the data acq[ﬁnded tobe atthe ctﬁrrect arrllval tm:ﬁs andl_?nglei,\ftt)ut d|.s$]Iﬁ/ed
sition system. A third limitation is that the algorithm tends tgiereasing error in the compiex path ampitude. Ater eight to

introduce bias into the channel parameter estimates as a paﬁegf iterations, the estimated fime and angle also begin tq fail,
closely-spaced arrivals appears. evidently due to error accrued from previous path subtractions.

These restrictions may be removed by developing an alg ?e;etobstﬁrvatlons suggeslttqthlr dhestmla}notﬂ pr?cegurg wh!cr|1
rithm based upon the maximum likelihood criteria [12], [18]a eviates the error accumuiation inherent in the standard seria

Given the arrivals process of (2), an arbitrary measurerkent 52N

may be modeled as The new algorithm, calleq the recursive serial search, uses the
measured calibration matric&s$,,,, m» = 1, 2, ---, M as fun-
. L ' damental basis functions. Using the delay operator mBX(ix,
V= Z Bie?? D(t)U(6) (11) D —1 new versions of each of the calibration matrices are con-
=1 structed, where the first is delayeg seconds, the secorit,
where seconds and so forth. This procedure yields the basis matrices
I number of discrete paths; C_k, wherek = 1,_2, e D X M. The a_lgorlthm then begins
Bei® complex weight of théth path: ywth the assumption that a single pqth isto b(_e f(_)und. A ._c,earch
D(#) 101x 101 diagonal time delay matrix [19]. is c.ondu.ct.ed. over all valugs _@f, gntll t_hat basis is identified
The values of. and#;, 6, 5 and¢; wherel = {1, 2, ---, L} which minimizes/p ;.. This first iteration of the process pro-

duces the same result as the first search of the standard sequen-

are selected to minimize . . . .
tial detection procedure. However, in the recursive case we do

01 8 o not explicitly remove the identified path. Rather, its indexjs
Ipmr = Z Z [vkn = Opn|” - (12)  retained in the path history, for use in subsequent searches.
k=1n=1 Once the index of the first path has been identified, the model

There are at least three strategies by which this cost furgder is incremented to consider a measurement composed of
tion may be minimized. Assuming a single compondni{ 1), two discrete arrivals. The first arrival, found in the previous it-
one could perform a simple serial search over all possible gfation, is assumed to be fixed at the inéexThe second arrival
gles and times of arrival. At each combination, the algorith#s found by another search over the remaining M —1 values
calculates the value g;¢/#* which serves to drive the costof . Once found, the second arrival is assigned the iridex
function to its minimum for the current pose. After all delays At each stage of iteration, the minimum value attained by the
and angles have been searched, the algorithm selects that &gt function is given as
bination which minimizes/p .. The winning combination is J o pHR1 13
weighted by the appropriate valuet’#!, and subtracted from DMLpin =M =P p; (13)

V. This combined search/subtraction algorithm is repeated URdihere  represents the cross correlation between each of the
L paths have been identified and removed fri¥mThis serial p5sis functions and the measurement matrix BRnepresents

search procedure is essentially identical to the CLEAN algghe correlation between the individual basis functions [19]. Also
rithm, which was developed for use in astronomy [14]. Its com-

pletion required. x D x M function evaluations, whetg s the 9
number of paths to identify) is the number of discrete delays m= Z Z [03en] (14)
to search, and/ is the number of discrete azimuths. h=in=l1

At the opposite extreme from the simple serial search is tigthe total energy contained in the measurement.
full parallel search, wherein all paths are identified simulta- The process of incrementing the model order, followed by
neously. The complex path weight now assumes the form of famding an additional path, is repeated until the desired number
L x 1 vector, and on each iteration the valuesond ¢ are of paths have been identified. Since the sequential algorithm
chosen which minimize/p . The search is performed overseeks to minimize/p 5, at each stage, paths are identified in
all delays and angles for all paths, until the global minimum order of decreasing energy. This property provides a convenient
is reached. This approach will substantially outperform the s@eans to exit the search, by monitoring the optimal value of
rial procedure, especially when the number of paths is large. Tlg,, ;, achieved at each iteration. Once the residual drops below,
improvement is derived principally from the fact that the seriaglay 10% ofrn, we may assume that the model has accounted for
search penalizes subsequent searches by accumulating erranast of the energy contained in the measurement, and the al-
the identification of the parameters of each path. The enhanggithm may be terminated. Like the simple sequential search,
accuracy comes at a heavy price, however, as the parallel sedinehrecursive search requirés x M x L evaluations of the
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cost function to identifyl. paths. However, in the recursive al-rier-to-noise ratio, each calibration matrix exactly captures the
gorithm, these evaluations assume the order of the numberai array output that is present for a single source arriving from
paths found. For example, searching for ftih path requires the bearing and distance at which the matrix was acquired. As
evaluation ofD x A systems ofL linear equations. Although calibration is performed in the far field of the array, a single
far more computation is required than the serial search, the atrival at a greater range produces a raw data matrix that is
gorithm is still quite practical. In most cases, parameter extranerely a delayed and scaled version of the calibration data ac-
tion from a measurement consumes from one to three minutpsred at the same bearing. Since radio propagation is well-de-
of CPU time on a contemporary Pentium-based personal coseribed as a linear phenomenon, and hence obeys superposition,
puter. The DML algorithm is considered in more detail in [19];aw data matrices may be generated by summing a large com-
where the spatial and temporal resolutions are determined tadimation of the measured calibration matrices that have been se-
2° and 1 ns, respectively, using sample measurements in the daeted, delayed, and scaled in accordance with known statistical

choic chamber. models. The data matrices so generated exactly capture a pre-
scribed physical situation of which we have precise knowledge,
V. VERIFICATION AND COMPARISON and allow the creation of data sets that comprise many more

paths than are typically seen in practice.

A. Performance Evaluation
Perhaps the most important stage in the development Bxf System Validation

any new measurement system is a critical investigation of theT
system’s accuracy when characterizing one or more exter g&
standards. For example, a new voltmeter might be evaluate HRX
connecting it to a highly repeatable source, and comparing
meter reading with the source setting, as the source is sweR

OvVer Some range of interest. From a conceptual standpol Stributed between- 180 and+18C°, and the time-of-arrival
a space-time measurement system could be evaluatedu ormly distributed between 0 and 200 ns. The path amplitude

acquiring many distinct data sets, and comparing the estima\tﬁ s taken as unit-variance complex Gaussian, and the number

path parameters with the known path parameters. Howev(gzir,paths was varied between 1 and 50

performing such a direct evaluation is not generally p035|ble,FigS_ 6 and 7 demonstrate the typical performance of the

since no technique exists to provide the known path parametggp and MML algorithm for a channel consisting of 20 known
with sufficient accuracy to make this comparison meaningful

A widel q h t ‘ uati ths. In Fig. 6, the known path parameters are represented by
widely-used. approach 1o performance evaluation of, open circle, whereas the SFP estimates are represented by
array processors is based upon the premises that a per

e
shift-invariant array is available, and that the only perturbati
afflicting the measurement system is receiver noise [11], [1
Numerous computer simulation runs are conducted as
power level of the noise source is adjusted, and the varia
of the estimates of one or two arrival angles is compared wi
results from the Cramer—Rao lower bound [18]. Unfortunatelg
this scenario does not provide a faithful simulation of a typic
channel characterization exercise. Data is typically acquire
at a carrier-to-noise ratio of at least 40 dB, and prior t
measurement the channel background noise is evaluate
ensure that interference from other users, such as wireles§he data acquisition system, and post processing algorithms
LANSs, is not present. When both of these conditions are mate currently being used to enable research of the space-time
the Cramer—Rao bound provides a lower limit on bearingroperties of indoor radio propagation. In Fig. 8 we present a
estimation accuracy that is several orders of magnitude lesgmce-time response calculated from data acquired in an indoor
than T [22]. Far more important than noise is the number dfOS environment. We note that significant energy arrives over
paths received, since a typical indoor environment may provida expanse of only about 50 ns, and is principally clustered
10-100 arrivals, while the standard algorithms, such as E&sout the bearing at which the transmitter is located. We also
PRIT and MUSIC, fail when the number of arrivals exceeds thetice that the first arrival is by far the largest, and represents
number of antenna elements [11]. Also, as shown in Sectionthe energy conveyed through the direct path.
the measured array response does not typically conform within Fig. 9, we present a typical response calculated from data
the perfect, shift-invariant model assumed in simulation. acquired in an obstructed LOS environment. This response is
As a practical, yet meaningful, alternative to the direct angastly different from the LOS case. The delay spread is roughly
simulation approaches, it is a straightforward matter to synthibree times longer, or about 150 ns. The arrivals are no longer
size raw data matrices by combining the measured calibratitightly clustered about the source bearing, and the first arrival
data according ta priori knowledge of the path parameters prois weaker than many subsequent arrivals. We note that since the
vided by propagation simulation or statistical models [17]. TDML algorithm provides only path parameter estimates, both
be specific, since calibration is performed at a very high cdfigs. 8 and 9 were generated using the SFP approa6cg.

he performance of both array processors, coupled with the
a acquisition system, was demonstrated by generating several
usand test cases as described in the preceding section. For
cases the path parameters were assumed to be independent
b identically distributed, with the angle-of-arrival uniformly

Stoss-hatch. In Fig. 7, the cross-hatches now represent pa-
meter estimates provided by the DML technique. The SFP
chnique finds many of the paths exactly, but is seen to en-
nter difficulty for paths that are nearly coincident in time
angle-of-arrival. By contrast, the DML algorithm identifies
[l paths exactly. This performance is to be expected so long as
ufficient carrier-to-noise ratio~§20 dB) is maintained. More
gtails of the statistical study may be found in [19].

1oSample Measurements
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Fig. 6. Parameter estimates produced by SFP algorithm.

Fig. 7. Parameter estimates produced by DML algorithm.

D. Comparison an approach which extends the functionality of the frequency-

The performance of the DML and SFP algorithms, togethgpmain _channel sounder by inclusion of an _antenna array as
with the other existing methods, is summarized in Table I. NotB€ réceiving element. As compared with existing measurement
that the specifications of the DML algorithm may be adjuste%trateg'es’ the new system features simplified setup, a dramatic

by manipulating the parameters used in the search process, &stfction in the data acquisition period, and the ability to sup-
described in Section IV. port high-resolution post processing.
Characterization of the array showed numerous nonideali-

ties which cause the response to depart from the theoretical
VI. SUMMARY AND CONCLUSIONS array factor formulation. As a result, this paper has not con-
The analysis of new and emerging wireless applications r@dered subspace signal processing, the accuracy of which is
quires an accurate characterization of the spatial-temporal progtically dependent on the array properties. Rather, two algo-
erties of the environment of interest. This paper has consider@ims have been derived which provide a convenient frame-
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Fig. 8. Example response from indoor LOS environment.
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Fig. 9. Example response from indoor obstructed LOS environment.

TABLE |
COMPARISON OFPROPAGATION MEASUREMENT TECHNIQUES

Size, at 2400 Acquisition  Processing Temporal Spatial
MHz Time Time Resolution Resolution
Lo-Litva single ~ 1 minute ~ 1 second ~ 25 nsec. ~ 90 degrees
monpole
Spencer et al. | 2-meter dish | >> 1 minute | >> 1 minute, |~ 3 nsec. ~ 6 degrees
manual
Rossi et al. small array >>1 minute |~ 1 second ~ 40 nsec. ~ 10 degrees
SFP small array <1 second ~ 1 second ~ 7 nsec. ~ 30 degrees
DML small array <1 second ~ 1 minute adjustable, adjustable,
< | nsec. <2 degrees

rival information using a least-squares beamformer, followed by
inverse Fourier transformation to calculate the time-of-arrival
information. This algorithm is computationally simple, but pro-
vides only modest resolution.

The discrete maximum likelihood algorithm is developed
using the measured calibration matrices as the fundamental
basis functions of a model fitting procedure. The model param-
eters are determined using a new search procedure, called the
recursive serial search, which eliminates the error propagation
effects of the CLEAN algorithm, at a modest increase in
complexity. Using known chamber responses, the combined
discrete maximum likelihood/recursive serial search algorithm

work within which to incorporate the measured calibration. Theas demonstrated the ability to separate arrivals spatea 2

spatial filter periodogram algorithm extracts the direction-of-agzimuth, and 1 ns in time.
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The data acquisition and post processing techniques describpd] A. J. van der Veen, M. C. Vanderveen, and A. Paulraj, “Joint angle and

in this paper are currently being used to collect a Iarge volume delay es'timation using shift-invariance techniquéSEE Trans. Signal
; f . . . Processingvol. 46, pp. 405418, Feb. 1998.
of data from indoor LOS and obstructed LOS environments. It 1$17] K. Pahlavan and A. Levesquwireless Information Networks New

envisioned that this data will form the basis of new models for ~ York: Wiley, 1995.

space-time propagation, which may be used to evaluate and opt#! \F('orlk Y,%ﬁeTyrefEfG%eff‘P”’ Estimation, and Modulation TheoryNew

mize systems employing smart antenna technology. [19] R. Tingley and K. Pahlavan, “A comparison of two techniques for pa-
rameter estimation on an indoor radio channel,Pioc. Wireless '99
Calgary, AB, Canada, July 12-14, 1999.

[20] —, “Measurement of the spatial and temporal propagation character-
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In-Building Intruder Detection for WLAN Access

Ahmad Hatami and Kaveh Pahlavan

Center for Wireless Information Network Studies
Worcester Polytechnic Institute (WPI}

hatami@wnpi.edu , kaveh@ece.wpi.edu

Abstract -- In recent years wireless local area network (WLAN) has
become a popular choice for local area networking in both enterprise
and home nctworking. Increased data rate and price reduction in
IEEE 802.11b-g devices has made WLANs even mere attractive in
these markets. User mobility has opened a new market for location
aware, and pervasive computing applications. As a service to these
new applications, security and user authentication plays a more
important role in a wireless environment compared to the
conventional wired systems. In the corporate WLAN environment,
since a mobile wirgless networks intruder can access the network
without physical presence inside the buildings, the solutions for
intruder detection has attracted considerable attention by the research
community.

In this paper we first provide an overview of the traditional location
sensing and intruder detection algorithms that are using the existing
[EEE 802.11 infrastructure. Then we introduce a new algorithm
targeted for intruder detection and authentication in a WLAN
network. The new algorithm uses indoer radio propagation modeling
to reduce complexity of the calibration process used in the existing
algorithms. - The performance of the existing and the new algorithm
in the first floor of the Atwater Kent Laboratory at the Worcester
Polytechnic Institute is used as a basis to compare the performances.

I. INTRODUCTION

WLAN made user mobility possible in a local area network,
and proliferation of portable computers and hand held devices
opened new paradigms in application domain. Location aware
and pervasive computing are among these new applications
[7]- In this paper our effort is to focus on two such
applications in this class, positioning application, and intruder
detection application.

Traditional methods for wireless positioning are based on
time-of-arrival  (TOA)  or  angle-of-arrival  (AOA)
measurements from several base stations (BS) and application
of triangulation [10] [11]. The Global Positioning System
(GPS) is the most widely used location-system in this class.
Unfortunately, there are two limitations in GPS based systems.
First, these systems do not provide good accuracy inside
buildings and other scenarios in which there is no direct line-
of-Site (LOS) between the mobile host (MH) and the base
station BS [1] [13]. The second limitation is the fact that these
systems require each MH to be equipped with an extra piece
of hardware which increases the cost, weight, and power
consumption of the device. Reference [2] introduced an
alternative approach for locating a MH in a WLAN

0-7803-8416-4/04/520.00 ©2004 IEEE.
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environment. In this method a MH measures the amount of
power it receives (Received Signal Strength (RSS)) from each
access point (AP). On the next step this data is matched
against a well known database which maps a set of RSS values
to some well known locations. Reference [3] — [8] enhance
this method by applying various techniques which are
described in the following sections.

Our implementation is based on RSS information coming
from several IEEE 802.11b AP’s. We used our ray tracing
(RT) software to generate a reference database rather than
using on site measurements,

In RSS based systems a MH estimates its location by using
RSS from multiple AP’s as a location dependent metric. This
approach can be easily deployed on top of the existing
network infrastructure without any cost for additional devices.
There are three main approaches that can be used for using
RSS in positioning systems. In the first approach one can use
RSS in a path loss model to estimate the distance between a
MH and a particular AP. In an ideal scenario MH needs three
RSS values from three distinct access points to apply
triangulation to determine its Jocation. However, in indoor
systems RSS is a highly variable metric, dependent on several
known/unknown parameters such as multi-path, interference,
local movements, etc. [1], which makes application of this
approach very challenging. '

The second approach is an exhaustive searching technique. In
this approach the system has a stored database that maps
location dependent metrics (in this case RSS) to some
previously known physical locations {Reference Points). The
MH uses RSS to find the closest set of mapping(s) in the
database, and declares its location by interpreting this
mapping(s) point(s). There are several flavors of this
approach, [2], [9] are in this group.

The third approach is the combination of the first two methods
in which RSS and triangulation is used to find some first hand
estimations and then a set of reference points are used for
interpolation. Reference [7] uses this approach,

All systems; using second and third methods; require a
reference database as mentioned before. The reference
database is a collection of reference points, acquired by on site
measurements on various locations, this can be a costly
process. The main difference between these systems s in their
matching/mapping  algorithms, which in tm affects
performance of the system.
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II. MATCHING ALGORITHMS USING RSS

The purpose of these algorithms is to search for an RSS
vector; (x’;,x’5, X'y ; received from AP]-APk in a
reference database; containing » distinct reference points
Ry (X33, %12, Xk} Ro (%21, X2, Xaic) o+ - -
Ry (X1, Xnz_ Xax) (Signal Space) located at (rx;, ry.),
(rx;, ry1) - (rx,, ry,) (Physical Space) respectively;
extract the corresponding reference point(s), and declare the
current location L(x,y) based on that. Note that in the most
general case the mapping between signal space and physical
space is not unique, in other words there might be several
distinct physical locations with the same RSS profile.

In order to evaluate these algorithms we need to consider the
following aspects of each algorithm.

r

Granularity: The reference database is a grid of known
Jocations in which we need to store RSS values. A higher
resolution database improves the accuracy of the location
estimation.

Complexity: Although by applying more complex algorithms
we can improve the performance of the system, but we need to
bear in mind that these systems are to be used in a real time
fashion in a wireless device with limited processing power.

Reliability and Fault Tolerance: WLAN systems are mostly
used inside a building, in locally operated network. These
networks are less reliable by nature. We need to make sure
that a MH can estimate its location with reasonable accuracy
in case of a failure of a single access point.

Deployment Costs and Scalability: The algorithm must be
capable of managing increasing number of MH’s without
imposing any major costs.

Performance Parameters: Accuracy, delay, coverage area,
and Capacity are among the metrics used in performance
evaluations of different algorithms.

A. Least Mean Square (LMS)

This algorithm uses the Euclidean distance between a
measured RSS vector {x/;,x’,, X' ) and the i’th
database entry R; (x,:, %52, X;;) givenby:

17 112
2
D, =7 (Z(x'i_xki) J (1)
i=1
as a metric to find the closest match point in the database
Ru (X1 ¢ Xyp,., %uc) , and declares the corresponding point in
the physical space (rxy, ryy)as the current location. Note

that the outcome of minimum distance may not be unique, The
major advantage of this algorithm is its relative simplicity.
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B. Least Mean Square with History Monitoring

Reference [9] uses the fact that a MH does not move from a
physical location to a different location arbitrarily. In other
words, there is a correlation between the previous location of a
MH and its curtent location. This correlation can be applied by
restricting the matching process to the reference points where
physical distance is not more than a specified value. This
distance can be an adjustable system parameter. For a
stationary or slow paced MH, moving at a speed of less than 1
m/s and a positioning sampling rate of 1 sec, this distance can
vary in the range of 1-10 m depending on the granularity of
the database. Some variation of this algorithm can improve the
performance of simple LMS algorithm [9].

C. Least Mean Square with Multiple Point
Matching (LMS-MP)

This algorithm picks W points closest database entries, instead
of a single reference point. These points can be used in an
interpolation scheme in order to improve positioning accuracy.
Reference [4] eliminates W-3 of the farthest points, and
declares the average of the remaining three reference points as
the current location. In some cases this algorithm provides
better accuracy.

D. Prioritized Maximum Power (PMP)

Ore major disadvantage of the LMS algorithm is the smearing
effect introduced by summing all distance emors. The
following example iilustrates this fact.

The vector (1., 2, 0, 0) has a Euclidean distance of 2 from
both vectors V1 (1,0,0,0) ,and V2 = (0,1,1,1).
It is obvious that ¥7 and V2 are not similar at all, in fact they
are perpendicular. Thus, a simple LMS mefric can not
distinguish between V/ and ¥2.

We used a modification to the LMS algorithm which alleviates
this problem and in some cases provides a better estimation,
compared to simple LMS algorithm, | ‘
For a measured RSS vector (x‘;,x’,, X'm) we
sort(x’;,X*;, X'in) in descending order. In this way
we can prioritize the contribution of each AP in our mapping
scheme, If AP; is the access point which has the maximum
RSS, we restrict our mapping process to a set of reference
points in which the corresponding RSS value for AP; is
maximum (S7). If the second dominant RSS value is coming
from AP; we restrict our mapping process to a set of reference
points in §/ in which the corresponding RSS value contributed
by AP; is maximum (52). We continue the same process for all
the other access points. If the final set is a null set we use the
last non null set of points as candidates. At this point we can
apply either simple LMS, or LMS-MP on this reduced set of
reference points.
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HI. TEST-BED, SCENARIOS &
APPLICATIONS

Qur test-bed is located in the first floor of Atwater Kent
(AKW1) building in Worcester Polytechnic Institute (WPI).
AKW1 has dimensions of 65 meter by 48 meter including
multiple rooms and labs. Cur WLAN consists of four actual
802.11b access points (AP1- AP4), located on different points
in the building. We added a fifth access point (APS) in ray
tracing simulations.

We created a grid with a resolution of one meter (Reference
Points), and used ray tracing software to generate a location
finger print (RSS form AP1-APS5) for all these points as a
function of location. This creates a database of 6600 points
with known locations both inside and outside of the building.
Our assumption is that RSS varies in different locations
depending on multi-path fading, interference, etc. In the data
collection process we found both places in which a MH can
receive a strong RSS from all the AP’s and therefore result in
a good reference point, and places with weak RSS from one or
multiple AP’s.

In upcoming scenarios we want to locate a MH using RSS
information received from AP1-AP3, and mapping them to a
reference point in our database for two different applications.
The first application is positioning. In this application we want
to find the exact location of a moving MH. The second
application of interest is intruder detection, where we want to
identify whether a2 MH is located inside the building or not
rather than finding the exact location of the MH, For this
purpose we have used both, measurement data collected by a
laptop computer equipped with an 802.11b card, and
simylation results of ray tracing software. We found that, by
calibrating results of ray tracing we can get a pood
approximation of measurement data. Since RSS value is a
function of several parameters, in our measurements we used
four different samples in different directions and averaged the
results,. We conducted our experiments in two scenarios. In
scenario I (Indoor-to-Indoor), MH moves along path P1 which
is entirely located inside the building. Figure 1 shows this
scenario. In scenario II {Indoor-to-Outdoor), MH moves along
path P2. This path starts in an outdoor location and goes
through both indoor and outdoor areas of the building. Figure
2 shows this path.

IvV. PERFORMANCE EVALUATION USING
EXPERIMENTAL RESULTS

In following sections we used positioning error as a random
variable and provided complementary cumulative function
(CCF) for that. Each point on these graphs CCF(X) represents
the probability of a positioning error more than or equal to X
meters. ’

A. PERFORMANCE IN INDOOR AREAS

Figure 3 shows the CCF for scenario 1 with one meter grid
resolution for LMS and PMP algorithins in positioning
application. It shows that LMS provides better accuracy since
Pl is located inside the coverage area of one or more access
points. We have included the same graph with different grid
resolutions; Figure 4 shows that as we decrease the gnid
resolution in points where the error is less than 20 m PMP and
LMS algorithms provide comparable results. We observed that
LMS or other variations of that can provide a reasonable
accuracy when MH moves inside the coverage area. Figure 5
shows the probability of error in intruder detection application
for scenario [ for both algorithms vs. different grid resolutions.
Based on our observations LMS provides better performance
in this application as well.

L I L I T I A

Figure 1: MH moving along P1

Figure 2: MH moving along P2
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B. PERFORMANCE IN INDOOR-OUTDOOR
AREAS

Figure 6 and Figure 7 show CCF of positioning error when
MH moves along path P2 for five and ten meters grid
resolution respectively, One major point in on these graphs is
the lower accuracy of position estimation, compared to
scenario I. The second interesting observation is the similarity
between the performance of PMP and LMS algorithms for a
high resolution grid. As we decreased the grid resolution we
observed that the performance of PMP did not change much,
and sometimes even improved. On the other hand performance
of LMS algorithm decreased significantly as we reduced grid
resclution. This shows that PMP has lower sensitivity to grid
resolution compared to LMS in positioning application.
Probability of error in intruder detection application is
depicted in Figure 8. This figure shows that LMS provides a
lower error in intruder detection application compared to
PMP, despite its poor location estimation.

Grid resolution determines the number of on site
measurements needed. By increasing the grid resolution we
can increase the estimation accuracy. This improved
performance increases measurement costs and also, a finer
grid translates to a larger reference database which in turn
dictates more processing power in MH. Grid resolution is one
of the major design parameters to be selected during
deployment. Figure 9 shows that when MH moves along P1
(inside the coverage area) by increasing grid resolution we can
locate it more accurately, as expected. On the other hand
Figure 10 ;which is a similar graph for scenario II; shows that
increasing grid resolution does not always guarantee higher
accuracy. '

In WLAN deployments, another major design parameter is the
number of access points and their locations. This has a major
impact on coverage area, number of hosts, quality of service
{QOS) etc. In our experiments, we found that the number of
available access points has an effect on estimation accuracy.
Figure 11 shows this behavior. As a design gnideline we need
to use enough number of access points to be able to achieve
the desired fault tolerance. Figure 11 and Figure 12 show the
impact of number of access points in both applications.

V. CONCLUSIONS

In this paper we discussed positioning application and intruder
detection application in WLAN’s. We showed that by using
the existing wireless infrastructure we can develop these
applications without adding any specialized hardware. We
discussed about existing positioning systems and their
limitations and presented the following enhancements to
improve performance.
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In our RSS based system we used RT software rather than
on site measurement, this can be a major cost rcductlon in
a large deployment.

We introduced PMP algorithm for positioning algorithm
which provides a better performance ¢compared to LMS in
positioning application for locations outside the coverage
area.

We showed that PMP is less susceptible to grid
Tesolution,

LMS does not provide accuracy in positioning
applications when MH resides outside the coverage area,

but it can detect an intruder with a good precision.
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Abstract—This paper presents a quantitative comparison of
various geolocation algorithms for the indoor wireless
environment. Using models recently developed for time-of-arrival
(TOA) distance measurement errors in the indoor environment,
we characterize the performance of standard least-square (LS),
closest-neighbor (CN), and the residual weighting (RWGH)
algorithms in Line-of-Sight (LOS), Obstructed LOS (OLOS), and
mixed LOS/OLOS channel conditions. We also evaluate the
performance of these algorithms in relation to the size of the
indoor area over which a user is to be located.
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L.

In recent years, there has also been a lot of interest in the
geolocation problem for the indoor setting. The applications
range from commercial and residential (for example, to track
people with special needs, or the elderly in nursing homes), to
public safety and military applications (for example, to track
inmates in prisons, or navigating policemen, firefighters and
soldiers to help them complete their missions) [1]. Because of
this, the characterization of the performance of geolocation
algorithms is an important issue.

INTRODUCTION

Geolocation systems all depend on an arrangement of base
stations (such as in Fig 1 below) performing distance
measurements to a user to be located. These measurements can
be performed in a variety of ways, such as Angle of Arrival
(AOA), Time of Arrival (TOA), or Received Signal Strength
(RSS) [1]. Of these, the TOA technique is the most popular for
accurate geolocation systems. As the name implies, TOA-based
systems use the time of arrival of the first path to estimate
distance. However, the unique nature of the indoor propagation
environment creates certain challenges in estimating the TOA
of the first path accurately [2].

Historically, performance characterization of geolocation
systems in the indoor environment has been complicated by the
fact that there were no models available for distance
measurement errors. Recently, some new models have been
developed to address this issue ([3], [4]). These models are
based on TOA-estimation techniques, and have characterized
the distance errors as a function of the bandwidth of the system
used to gather TOA measurements, and in the presence of
Line-of-Sight (LOS), and Obstructed LOS (OLOS) propagation
conditions. The fundamental contribution of this paper is to
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characterize the performance of Least-Squares (LS), Closest-
Neighbor (CN), and the Residual Weighting (RWGH)
algorithms in the presence of these models.

The rest of this paper is organized as follows. Section II
undertakes a description of the algorithms used. Section III is
devoted to a discussion of the distance error models. Section IV
presents results of the performance evaluation. Section V
concludes the paper.

II.  DESCRIPTION OF THE ALGORITHMS

A. Closest-Neighbor (CN) Algorithm

Consider a group of base stations (BSs), arranged in a
regular grid, such as the one shown in Fig.1. In such a scenario,
each base station is located at L meters away from its adjacent
BSs. In order to locate a particular user, each BS would
perform a distance measurement to that user. Let d; be the
distance measurement performed by base station i, which is
located at R;= [x; y;]". The CN algorithm estimates the location
of the user, R, as the location of the BS that is located closest
to that user. In other words, R, is that value of R; for which the
corresponding distance measurement, d, is the minimum in the
set. For example, in Fig 1, the location of the user would be
determined as the location of BS 4.

B. Least-Squares (LS) Algorithm

The LS algorithm is fundamentally focused on minimizing
the value of the objective function, f{x), usually formulated as:

2

N
0= (Y-t e =27 -d,) @

i=1

where N is the number of reference base stations. The square-
root term is readily recognized as the distance between a point
(x, ¥) in the Cartesian coordinate system, and a reference base
station located at (x; y;). The difference in the parentheses is
commonly called the residual of the estimate. Of course, at the
true location of the user, each of terms within the summation
would be identically zero, such that f{x) = 0. However, in
practice, the set of distance measurements, d; (I < i < N),
contains some errors, such that the summation in equation (1)
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will never be identically zero. The sources of these errors are
basically two-fold: systematic (such as those related to
synchronization mismatch between a transmitter and receiver),
and channel-related (such as those due to Obstructed LOS
(OLOS) channel conditions). In this paper, we assume that the
systematic errors in the distance measurements are negligible,
and that the dominant source of errors is the channel. OLOS
channel conditions generally result in the strongest signal being
received with longer delay, with the resulting distance
measurement being longer than it should be. Under such
circumstances, a solution (x, ) can be found, which minimizes
the value of f{x) in a least-squares sense. For this paper, we
used a least-squares algorithm developed by Davidon [5] to
minimize f{x), which we discuss below.

The Davidon algorithm is a computationally efficient least-
squares algorithm that is based on the Newton-Raphson
method, and belongs in the general category of quasi-Newton
methods [6]. The Davidon algorithm searches for the point
minimizing (1) (generally denoted as the vector, x) in an
iterative manner, as defined by the equation:

X1 =X, —Hig(x) Q)

where H, represents an approximation to the inverse of the
Hessian of f(x), G(x), whose elements are defined as:

B 02 f(x,. %500,

ox X,

3)

G,(x,.x,,...x,)

and g(x) is the gradient of f(x), defined as:
g(x)=Vf(x) 4

As can be seen from (3), G(x) is a matrix of second
derivatives. It can be shown that G(x) is both symmetric, and
positive-definite. However, computing the Hessian and its
inverse at every iteration point (as the Newton-Raphson
method generally requires) can be computationally prohibitive.
Therefore, the Davidon algorithm tries to construct an
approximation to it. Of course, in doing this, one would have to
ensure that the approximation, H,, stays both symmetric and
positive-definite from one iteration to the next. To accomplish
this, H, is updated according to the equation:

A, -1
H,, =H, +~*—nr" (5
k
where:
r, =H,g(x;4,) (6)
and

T
P, =(gxx) Hi(gxe) =1 g(x) (7
Equation (7) is readily recognized as a quadratic form.
Therefore, as long as H, is positive-definite, p will be greater

than zero, and will be zero only if g(x) is zero. As such, (7) is
often used as an explicit stopping criterion for the algorithm.
Of course, in practice, P, will never be identically zero, but can
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be compared to some small tolerance value, €, so that
computations stop when p SE

All this leaves us with the task of setting Ay, which is
somewhat more complex. As can be inferred from (5), this
quantity is of central importance in ensuring that the H,
matrices remain positive-definite throughout successive
iterations. It can be shown ([5]) that:

Vi
=—" 8
S (3)
where:
r,Tg(x
Yi=- i 8(X;) )
Pk

Choosing Ay in accordance with (8) and (9) generally
ensures that H, remains positive-definite from one iteration to
the next, unless y,= -1. Because of this possibility, the
Davidon algorithm provides a slightly different way of
mapping ¥, values to A, values. Specifically, two numbers,
and , are defined. The values of these can be picked at will.

Then, the Davidon algorithm defines the following
transformation:
a _i }/<_
p+1 1-
B B
Aly)= -——<y< 10
() =18 R (10)
x_ elsewhere
y+1

C. Residual Weighting (RWGH) Algorithm

The RWGH algorithm has been investigated in [7], and [8]
as a way of mitigating the effects of errors in distance
measurements brought about by OLOS channel conditions.
Although originally formulated in the context of geolocation in
terrestrial cellular systems, this algorithm was included in this
study to evaluate its performance in an indoor setting, and can
be basically viewed as a form of weighted least-squares
algorithm.

The fundamental concept behind this algorithm is as
follows: since OLOS channel conditions introduce errors that
are strictly positive, distance measurements corrupted by
OLOS errors would give rise to location estimates with higher
residuals than would be the case with no OLOS errors.
Therefore, if the number of distance measurements is greater
than the minimum required (which, for a TOA-based system, is
three), then the distance measurements can be grouped in
various ways and intermediate LS estimates derived from those
sub-groups. Some of these intermediate estimates would have
lower residuals than others. The final estimate of the location
can then be formed as a linecar combination of these
intermediate estimates, with each intermediate estimate
weighted by the inverse of its associated residual. This means
that, in the computation of the final estimate, those
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intermediate estimates with lower residuals would be assigned
more weight. In this manner, the overall accuracy of the
location estimate can be improved. Specifically, given M (M >
3) distance measurements, the algorithm calls for the formation
of N different distance measurement combinations, where

M (M
N:;(ij (11)

with each combination being represented by an index set {S; | k
= 1,2,.....N}. An intermediate LS estimate is then computed for
each set of measurements. Note that the sets S; will not
necessarily all be of the same size. Therefore, the residuals in
the intermediate LS estimates may depend on the size of the
set. In order to remove this dependence, a normalized residual
is computed for every intermediate estimate, x;', as:

Res (X’k 7Sk)

Res(X' (,5;) =
(x'55) size of S}

(12)

The final estimate, X', can then be computed as:

N

~ .
Z X (Re“ (X' aSk))
X = k:lN - 5 (13)
z (Res (X' &Sk )j
k=1
III. OVERVIEW OF THE CHANNEL MODELS

The behavior of the channel under LOS and OLOS
conditions is very different. Within the context of the
geolocation problem, the different channel conditions can
introduce different amounts of errors to the distance
measurements. This, in turn, affects the accuracy of the final
location estimate. We assume the following model for the
distance measurement errors. Let d,; represent the actual
distance of the user from base station i, assuming no systematic
or channel-related errors. The distance measurement, as
reported by base station i in the presence of errors, can be
modeled using the equation:

di = da,i(l + 77) (14)

where 1 is a random variable, whose distribution depends on
the particular channel scenario [4]. Specifically, it has been
shown that, for the LOS case, n has a Gaussian distribution
with a zero mean, and a variance that depends on the system
bandwidth used to make the distance measurements. For the
OLOS case, it has been shown that 1 has a hybrid distribution,
which is a linear combination of Gaussian and exponential
distributions, with the parameters again being a function of the
system bandwidth. This paper uses the parameters as specified
in [4] for the performance evaluations.

IV. PERFORMANCE EVALUATION

The performance of the three algorithms described in
section II is evaluated through simulations. The regular grid
arrangement of four base stations is assumed, as shown in Fig
1. A number of random user locations are simulated. Each of
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the BSs performs a distance measurement to that user, which
are corrupted, in accordance with (14), and using the particular
distribution for n [4]. Three different channel scenarios are
simulated: LOS, OLOS, and mixed LOS/OLOS. The mixed
LOS/OLOS scenario is simulated using a binomial random
variable, such that the channel is likely to be LOS with
probability p, and OLOS with probability /-p. The results are
presented for the case of p = 0.3. System bandwidths in the
range of 50 — 1000 MHz are considered for the distance error
models, as given in [4]. The performance metric is the average
estimation error, £, defined as:

av?

Eav = E{' Rest - Ract'} (15)
where R,
user.

The first set of simulation results (Figures 2 through 4),
show a comparison of the LS and RWGH algorithms for LOS,
OLOS and mixed LOS/OLOS scenarios. These results have
been obtained over a 15m x 15m area. The corresponding
results for the CN algorithm are not shown, since this
algorithm will have large estimation errors associated with it
due to its simplicity. For this reason, the authors feel that
directly comparing CN with LS and RWGH in this context is
not necessarily fair. The next set of results (Fig 5) presents a
performance comparison for the CN algorithm for the three
channel scenarios in a 15m x 15m area. The rest of the results
compare the performance of the three algorithms in a 15m x
I5m area, versus 30m x 30m area (LS in Figs. 6 through 8,
RWGH in Figs. 9 through 11, and CN in Figs. 12 through 14),
for all the three different channel scenarios.

On the basis of the results presented in Figs. 6 through 14,
an average degradation factor, K, has been calculated for all
the three algorithms within each channel scenario. These
values are shown in Table I, and are calculated as follows. For
a given algorithm, and channel scenario, the ratio of £, values
at 30m x 30m to the values for 15m x 15m are calculated for
each measurement bandwidth value. K is then calculated as
the average of all the ratio values. Essentially, K allows an
insight into the amount of performance degradation (i.e.
reduction in estimation accuracy indicated by the increase in
E ) that can be expected as the size of the area is increased.
The exact amount of performance degradation will, of course,
vary as a function of the system bandwidth; nevertheless, K
will be helpful in giving a rough idea.

and R are the actual and estimated locations of a

TABLE L AVERAGE DEGRADATION IN ESTIMATION ACCURACY
Algorithm Channel Scenario K,

LS LOS 2.011
OLOS 2.048
MIXED LOS/OLOS 2.052
RWGH LOS 2.024
OLOS 1.920
MIXED LOS/OLOS 1.897
CN LOS 2.002
OLOS 1.991
MIXED LOS/OLOS 1.991
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comparison of LS and RWGH (MIXED LOS/OLOS model, 15x15m area)
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Figure 4. LS/RWGH comparison for mixed LOS/OLOS channel
Figure 1. The basic configuration for a geolocation system
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comparison of LS algorithm for 15m x 15m area vs 30m x 30m area (OLOS model) comparison of RWGH algorithm for 15m x 15m area vs 30m x 30m area (OLOS model)
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comparison of CN algorithm over 15m x 15m area vs 30m x 30m area (OLOS model)
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Figure 13. CN comparison in OLOS case (area increase)
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Figure 14. CN comparison in mixed LOS/OLOS case (area
increase)

V. CONCLUSIONS

Based on the results presented in the previous section we
can draw a number of conclusions:

1. Regardless of the particular type of channel scenario,
the CN algorithm has the worst performance of the
three algorithms considered. This is expected, since
the algorithm provides an estimate that is only as
accurate as the location of the BS that is closest to the
user.

2. The difference in performance between the LS and
RWGH algorithms rapidly diminishes beyond a
measurement bandwidth of 100 MHz, for the LOS
case. In other words, as long as the system bandwidth
is above 100 MHz, RWGH provides no additional
advantage from a performance perspective in the LOS
case. For the OLOS and mixed LOS/OLOS cases,
however, the performance of RWGH is significantly
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better than that of LS algorithm. This point is
currently under further investigation.

3. Based on the distance error model parameters
considered in this paper, it can be said that increasing
the size of the area over which a user is to be located
(while keeping the number and location of BSs fixed)
makes the resulting location estimates less accurate.
This point makes intuitive sense, in that as the area
gets larger, the LOS paths from the BS to the user will
suffer more path loss, and the OLOS paths will suffer
more delay (due to multipath). These factors will
affect the TOA measurements, and therefore, the
distance measurements that a given BS will make.
From the results given in Table I, it can be seen that a
four-fold increase in the size of the area translates to
an approximately two-fold increase in estimation
error, regardless of the algorithm, and the particular
channel scenario.
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Abstract—This paper presents the CN-TOAG (Closest-
Neighbor with TOA grid) algorithm, a new geolocation
algorithm, which presents certain performance
improvements in the indoor environment. We describe this
algorithm, and quantitatively compare its performance to
the standard Least-Squares (LS), as well as weighted least-
squares (RWGH) algorithms in the presence of Obstructed
LOS (OLOS) channel conditions. The results indicate that
the CN-TOAG algorithm can outperform the other two
algorithms in the indoor environment.

Keywords-geolocation, wireless networks, indoor, positioning

L. INTRODUCTION

In recent years, there has also been a lot of interest in the
geolocation problem for the indoor setting. The applications
range from commercial and residential (for example, to track
people with special needs, or the elderly in nursing homes), to
public safety and military applications (for example, to track
inmates in prisons, or navigating policernen, firefighters and
soldiers to help them complete their missions) [1]. Because of
this, the characterization of the performance of geolocation
algorithms is an important issue.

Geolocation systems all depend on an arrangement of base
stations (such as in Fig 1 below) performing range
measurements to a user to be located. These measurements can
be performed in a variety of ways, such as Angle of Arrival
(AOA), Time of Arrival (TOA), or Received Signal Strength
(RSS) [1]. Of these, the TOA technique is the most popular for
accurate geolocation systems. As the name implies, TOA-based
systems use the time of arrival of the first path to estimate
range. However, the unique nature of the indoor propagation
environment creates certain challenges in estimating the TOA
of the first path accurately [2].

Historically, performance characterization of geolocation
systems in the indoor environment has been complicated by the
fact that there were no models available for range measurement
errors. Recently, some new models have been developed to
address this issue ([3], [4]). These models are based on TOA-
estimation techniques, and have characterized the range errors
as a function of the bandwidth of the system used to gather
TOA measurements, and in the presence of Line-of-Sight
(LOS), and Obstructed LOS (OLOS) propagation conditions.

Given the propagation conditions (as embodied in the range
measurement error models), one can then develop algorithms
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for estimating the location of a user accurately. This paper
proposes a new algorithm, known as CN-TOAG (Closest-
Neighbor with TOA grid), and compares its performance to
standard as well as weighted least-squares methods.

The rest of this paper is organized as follows. Section II
undertakes a description of the algorithms used. Section III is
devoted to a discussion of the ranging error models. Section IV
presents results of the performance evaluation. Section V
concludes the paper.

II.  DESCRIPTION OF THE ALGORITHMS

A. Closest-Neighbor with TOA Grid (CN-TOAG) Algorithm

Before discussing the CN-TOAG algorithm, it would be
instructive to review the standard Closest-Neighbor (CN)
algorithm.

Consider a group of base stations (BSs), arranged in a
regular grid, such as the one shown in Fig.1. In such a scenario,
each base station is located at L meters away from its adjacent
BSs. In order to locate a particular user, each BS would
perform a range measurement to that user. We let d; denote the
range measurement performed by base station i, which is
located at R, = [x, 3], and denote the set of range
measurements performed by each BS by D. The CN algorithm
estimates the location of the user, R.q;, as the location of the BS
that is located closest to that user. In other words, R, is that
value of R; for which the corresponding range measurement, d;,
is the minimum in the set. For example, in Fig 1, the location of
the user would be determined as the location of BS 4.

The CN-TOAG algorithm is a variation of this idea.
Specifically, with the CN-TOAG algorithm, the whole area
covered by the array of BSs is divided into a grid of points,
with each point being equidistant from each of its adjacent
neighbors, as shown in Fig. 2. As can be seen, this is equivalent
to subdividing the area covered by the array of BSs into equal-
sized squares of size A meters. There is a set of range
measurements associated with each point on the grid, one from
each base station. In our current example, since there are four
BSs involved, each point, (x; y;), on the grid has a vector of
four range measurements associated with it. We denote such a
vector of range measurements associated with a particular point
on the grid by ry, and call it the range signature associated with
the point (x; y;). Conceptually speaking, having a range
signature associated with each point on the grid is almost
equivalent to performing TOA-based range measurements to
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each point on the grid, and we will call the overall construct a
TOA grid.

Since the range values forming the range signature for a
given point can be based on straightforward geometric
calculations (assuming the locations of the BSs are known
accurately), the range signature is exact. Therefore, the user
location can be estimated by comparing the vector of range
measurements to the range signature at each point, and noting
the degree of similarity between them. Specifically, for each
point on the TOA grid, (x; y;), an error figure, e, is calculated
as:

e; =ID-r)| (1)

The estimated location, R,y is that point, (x; y;), on the grid
which corresponds to the minimum value of e;.

As may be expected, the granularity of the TOA grid, as
given by 7, is a big determinant of the estimation accuracy for
this algorithm.

B.  Least-Squares (LS) Algorithm

The LS algorithm is fundamentally focused on minimizing
the value of the objective function, f{x), usually formulated as:

N 2
0=y (=7 +-37-d,) @
i=1

where N is the number of reference base stations. The square-
root term is readily recognized as the range between a point (x,
y) in the Cartesian coordinate system, and a reference base
station located at (x; y;). The difference in the parentheses is
commonly called the residual of the estimate. Of course, at the
true location of the user, each of terms within the summation
would be identically zero, such that fx) = 0. However, in
practice, the set of range measurements, d; (/ <i <N), contains
some errors, such that the summation in equation (2) will never
be identically zero. The sources of these errors are basically
two-fold: systematic (such as those related to synchronization
mismatch between a transmitter and receiver), and channel-
related (such as those due to Obstructed LOS (OLOS) channel
conditions). In this paper, we assume that the systematic errors
in the range measurements are negligible, and that the
dominant source of errors is the channel. OLOS channel
conditions generally result in the strongest signal being
received with longer delay, with the resulting range
measurement being longer than it should be. Under such
circumstances, a solution (x, y) can be found, which minimizes
the value of f{x) in a least-squares sense. For this paper, we
used a least-squares algorithm developed by Davidon [5] to
minimize f{x), which we discuss below.

The Davidon algorithm is a computationally efficient least-
squares algorithm that is based on the Newton-Raphson
method, and belongs in the general category of quasi-Newton
methods (6]. The Davidon algorithm searches for the point
minimizing (2) (generally denoted as the vector, x) in an
iterative manner, as defined by the equation:

X =X —Hig(xy) (3

where H represents an approximation to the inverse of the
Hessian of f{x), G(x), whose elements are defined as:

& f(x,. %03y

G, (x,.x,...x,)=
/ ox,x,

@

and g(x) is the gradient of f{x), defined as:
gx)=V/lx) )

As can be seen from (4), G(x) is a matrix of second
derivatives. It can be shown that G(x) is both symmetric, and
positive-definite. However, computing the Hessian and its
inverse at every iteration point (as the Newton-Raphson
method generally requires) can be computationally prohibitive.
Therefore, the Davidon algorithm tries to construct an
approximation to it. Of course, in doing this, one would have to
ensure that the approximation, Hy, stays both symmetric and
positive-definite from one iteration to the next. To accomplish
this, Hy is updated according to the equation:

A, -1
Hy, =H;+~~—rr" (6)
Pk

where:
r,=Mg(xn) D
and

P, = (g(xk+l))THk(g(xk+1)) =r/g(x) ()

Equation (8) is readily recognized as a quadratic form.
Therefore, as long as Hy is positive-definite, p, will be greater
than zero, and will be zero only if g(x) is zero. As such, (8) is
often used as an explicit stopping criterion for the algorithm.
Of course, in practice, o, will never be identically zero, but can

be compared to some small tolerance value, & so that
computations stop when p, <e.

All this leaves us with the task of setting A, which is
somewhat more complex. As can be inferred from (6), this
quantity is of central importance in ensuring that the Hy
matrices remain positive-definite throughout successive
iterations. It can be shown ([5]) that:

Yk
A, =& 9
k Ve +1 ©)

where:

= —ﬁ(—xk—) (10)
Pk

Choosing Ay in accordance with (9) and (10) generally
ensures that Hy remains positive-definite from one iteration to
the next, unless y,= -1. Because of this possibility, the
Davidon algorithm provides a slightly different way of
mapping y, values to A values. Specifically, two numbers, o
and B, are defined. The values of these can be picked at will.
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Then, the Davidon algorithm defines the following
transformation:
. B
p+1 -a
B B
Aly)= <y <= 11
(r)=18 31 g WV
2z elsewhere
y+1

C. Residual Weighting (RWGH) Algorithm

The RWGH algorithm has been investigated in [7], and [8]
as a way of mitigating the effects of errors in range
measurements brought about by OLOS channel conditions.
Although originally formulated in the context of geolocation in
terrestrial cellular systems, this algorithm was included in this
study to evaluate its performance in an indoor setting, and can
be basically viewed as a form of weighted least-squares
algorithm.

The fundamental concept behind this algorithm is as
follows: since OLOS channel conditions introduce errors that
are strictly positive, range measurements corrupted by OLOS
errors would give rise to location estimates with higher
residuals than would be the case with no OLOS errors.
Therefore, if the number of range measurements is greater than
the minimum required (which, for a TOA-based system, is
three), then the range measurements can be grouped in various
ways and intermediate LS estimates derived from those sub-
groups. Some of these intermediate estimates would have lower
residuals than others. The final estimate of the location can
then be formed as a linear combination of these intermediate
estimates, with each intermediate estimate weighted by the
inverse of its associated residual. This means that, in the
computation of the final estimate, those intermediate estimates
with lower residuals would be assigned more weight. In this
manner, the overall accuracy of the location estimate can be
improved. Specifically, given M (M > 3) range measurements,
the algorithm calls for the formation of N different range
measurement combinations, where

MM
N:Z;‘(ij (12)

with each combination being represented by an index set {S; / k
= [,2,.....N}. An intermediate LS estimate is then computed for
each set of measurements. Note that the sets S; will not
necessarily all be of the same size. Therefore, the residuals in
the intermediate LS estimates may depend on the size of the
set. In order to remove this dependence, a normalized residual
is computed for every intermediate estimate, x', as:

Res(x‘k ’Sk)

Res(X 4 S) =~ of 5,

(13)

The final estimate, x', can then be computed as:

ngk(km(x'k,sk)]—I

X = (14)

2(1}“("' K vSk)J_l

k=1

III. OVERVIEW OF THE CHANNEL MODELS

The behavior of the channel under LOS and OLOS
conditions is very different. Within the context of the
geolocation problem, the different channel conditions can
introduce different amounts of errors to the range
measurements. This, in turn, affects the accuracy of the final
location estimate. We assume the following model for the
range measurement errors. Let d,; represent the actual range of
the user from base station i, assuming no systematic or
channel-related errors. The range measurement, as reported by
base station i in the presence of errors, can be modeled using
the equation:

di=d,;(1+m) (15)

where 7 is a random variable, whose distribution depends on
the particular channel scenario [4]. Specifically, it has been
shown that, for the LOS case, n has a Gaussian distribution
with a zero mean, and a variance that depends on the system
bandwidth used to make the range measurements. For the
OLOS case, it has been shown that 1 has a hybrid distribution,
which is a linear combination of Gaussian and exponential
distributions, with the parameters again being a function of the
system bandwidth. This paper uses the parameters as specified
in [4] for the performance evaluations.

IV. PERFORMANCE EVALUATION

The performance of the three algorithms described in
section II is evaluated through simulations. The regular grid
arrangement of four base stations over an area of size 20m by
20m is assumed, as shown in Fig 1. A number of random user
locations are simulated. Each of the BSs performs a range
measurement to that user, which are corrupted, in accordance
with (15), and using the particular distribution for n [4]. For
the purposes of this paper, only the OLOS channel scenario is
considered. System bandwidths in the range of 50 — 1000
MHz are considered for the range error models, as given in
[4]. The choice of these bandwidth figures for this study is
purely arbitrary; these bandwidth values are sufficient to
present a good representative sample of the results. There are
two performance metrics depicted in the results presented
below. The first is the root-mean-square positioning error
(RMSE,,), defined as:

RMSE,,, = \[E{(R , R, '} (16)

where R, and R, are the actual and estimated locations of a
user. The other performance metric is the root-mean-square
ranging error (RMSE,,,), defined as:
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RMSE,,, = [E{(d-d, )’} (7

where d,. is the vector of actual (uncorrupted) range
measurements, and d is the vector of range measurements
that the BSs would report in practice (i.e. the range
measurements corrupted by OLOS channel conditions).

The results are presented in Figures 3 through 6. In
Figures 3 through 5, the performance of the CN-TOAG
algorithm is compared against the LS and RWGH algorithms
for three system bandwidth values: 50 MHz, 500 MHz, and
1000 MHz. In each of these figures, the RMSE for ranging,
as well as the RMSE for positioning is depicted for each
algorithm (the RMSE for ranging and positioning are
referred to in the plots as RMSE ‘before’ and ‘after’
positioning respectively). Figure 6 aims to show how the
performance of the CN-TOAG algorithm (i.e. the RMSE,,,
value) varies as the system bandwidth is varied.

Figure 2 A geolocation system showing the TOA
grid for the CN-TOAG algorithm

1909

Figure 3 Comparison of CN-TOAG performance
versus LS and RWGH algorithms (system bandwidth
=50 MHz) :

Figure 4 Comparison of CN-TOAG performance
versus LS and RWGH algorithms (system bandwidth =
500 MHz)
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Figure 5 Comparison of CN-TOAG performance versus LS
and RWGH algorithms (system bandwidth = 1000 MHz)
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Figure 6 CN-TOAG performance at the various bandwidth
values

V. CONCLUSIONS

On the basis of the results presented in the previous section,
we can draw a number of conclusions:

1. CN-TOAG can achieve exactly the same level of
performance as the LS and RWGH algorithms in the
indoor OLOS environment, provided that the TOA
grid is granular enough (i.e. 4 is small enough). From
the resulis of our system scenario, we note that,
regardless of the system bandwidth used to make the
range measurements, CN-TOAG can achieve exactly
the same performance as LS using # = 8.5 m. In the
case of RWGH, the grid has to be only slightly more
granular for CN-TOAG to achieve the same
performance, with 4 in the 6 — 6.5 m range.

2. CN-TOAG performance does not appear to improve
appreciably beyond a certain value of 4. For the
system scenario considered in this paper, this value of
h is about 1.25 m.

3. From the results, we note that the CN-TOAG
performance essentially stays the same between
system bandwidth values of 500 and 1000 MHz. As
the bandwidth of the system used to make the range
measurements is increased, the range measurements
themselves would be more accurate, which is
normally expected to translate to a more accurate
location estimate. However, for the CN-TOAG
algorithm, the results suggest that beyond a certain
point, increasing the system bandwidth any further
will not necessarily result in greater accuracy in the
location estimates. This issue is currently under
further investigation.
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Abstract— In this paper we present a real-time channel
simulation environment for performance evaluation of the indoor
geolocation systems using RSS. The EKAHAU positioning
software is used as the test positioning system for performance
evaluation. The core of the testbed hardware is the PROPSim
real-time channel simulator originally developed for real time
performance evaluation of wireless communication modems. We
interface the hardware to 2D Ray tracing software to make it
suitable for simulation of the indoor location identification. This
paper provides implementation details of this testbed and
presents the preliminary results of our performance evaluation.

Index Terms—Indoor Geolocation, performance evaluation,
RSS fingerprinting algorithm, and Testbed.

I. INTRODUCTION

Recently indoor geolocation applications have attracted
considerable attention in the field of telecommunication.
Accurately predicting the location of an individual or an
object definitely can be an ambiguous and difficult task
because of the harsh wireless environment. The indoor radio
propagation channel is characterized as site-specific, severe
multipath, and low probability of a Line Of Sight (LOS)
signal propagation path between the transmitter and receiver
[1]. Applications for indoor geolocation systems consist of
three main categories; commercial, public safety and military
applications. In commercial applications the main need is for
locating patients in a hospital or important objects in
warehouses. Public safety application comprises of locating
inmates in prison or firefighters in a building. In military
applications the main interest is tracing soldiers in combat.
Recently there are software packages available in the market
which can locate the predefined object almost precisely but
still there is a strong interest for more accurate systems
comparable to outdoor geolocation systems like GPS.

Basically the indoor geolocation procedure begins with
collecting metrics according to the position of the mobile
terminal relative to the reference point. Almost any sort of
metric which is used in telecommunication systems can also
be used in geolocation systems. Direction of Arrival (DOA)
and Received Signal Strength (RSS) are the most popular ones
but one can use Time of Arrival (TOA) and Phase of Arrival
(POA) as well. They are used widely in location estimation
systems. GPS, which is the most famous positioning system,
works with the TOA of the signal.

The second step is to process the gathered metrics and
estimate the location of the desired object. This step usually
requires signal processing knowledge unless fingerprinting
method is being used. In this method before any location
estimation one should build a grid network for the place and
collect the metric according to the location of each node in
grid. After building the database for a new location one can
measure the metric and compare it with database to find the
best node that could be referred to the desired point. In any
other methods metrics should be processed. Figure 1
demonstrates a block diagram of the positioning process. The
more reliable measured metrics we have, the less complex the
estimation algorithm would be.

The idea of developing a real-time testbed for indoor
geolocation systems can help us to evaluate the performance

. Location metrics: Location
Recgwedl TOA, AQA, coordinates
RF signa RSS, .. x ¥, 2)
Location
) | OCCC" e
E Pasitioning - Display
X algorithm system
Location
o) [ ocat A =)

Figure 1: Block Diagram of positioning systems
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of a positioning system in a specific building. No work has
been done in terms of performance evaluation of indoor
geolocation systems so this real-time testbed will help us to
assess the performance of such systems.

There are two approaches for building an infrastructure for
positioning systems. The first approach is to use the existing
infrastructure for WLAN systems and develop a signaling
system while the second approach requires designing a
specific infrastructure for positioning.

The accuracy of location estimation is a function of the
accuracy of location metrics and the complexity of positioning
algorithms. Since the metrics for geolocation applications are
AOA, RSS, and TOA, models for geolocation application
must reflect the effects of channel behavior on the estimated
value of these metrics at the receiver. The existing
narrowband indoor radio channel models designed for
telecommunication applications [2] can be used to analyze the
RSS for geolocation applications. The emerging 3D channel
models developed for smart antenna applications [4] might be
used for modeling of the AOA for indoor geolocation
applications. However, the existing wideband indoor
multipath channel measurement and models [1] are not
suitable for analysis of the behavior of TOA for geolocation
applications.

The outline of this paper is as follows. Section 2 of this
paper will review the testbed design for Real-Time positioning
systems. In section 3 the results of the real-time testbed will
be discussed. Section 4 includes the conclusion and future
work.

II. DESCRIPTION OF THE TESTBED
In this section the general design of the testbed will be
described and each block is going to be described briefly.
A. General architecture

Running massive measurement is one of the ways to
evaluate the performance of a positioning system. This way

Figure 2: Depiction of Testbed

also is not repeatable and every time we gather the
measurement data we may get different errors. But with this
Testbed one can sit in the lab and evaluate the performance of
a positioning system without gathering real data from different
locations. Also the scenario is repeatable with this Testbed, so
we can compare the results of one positioning system with
another one and compare the results.

The intuition here is to use a real-time channel simulator for
performance evaluation of a positioning system. With the aid
of this real-time channel simulator we can simulate the
channel between transmitter and receiver antenna. We can
divide the testbed into two main parts, software and hardware.
EKAHAU and Ray Tracing blocks are software oriented
while PROPSim is hardware.

Figure 2 shows us a picture of the testbed and figure 3
shows us a Block diagram of designed testbed. Ray tracing
and modeling blocks have been implemented in PC while
EKAHAU and display have been implemented in the laptop.
Real-time channel simulator block is connected to the access
points with cables while channel models have been fed to
channel simulator through a parallel interface.

AP1 RSS1 —m CHI |
annel model | ———weeeee
N Ekahau Calibrated
............ ¥ manager
APZ RSS2 popn Ve Database
Sarvar annel modal 2 —— s F\FlféF'S&m
F
Ekahau
ghal e cHa | Pasitioning
__________________ annel model 33—l Engine
Channel| :
i omodels |
i (o ]
Ray |
Tracing Laptap
Local
Frequency
generalor

Figure 3: Block Diagram of the testbed
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B. Details of the elements of the testbed

EKAHAU is a positioning system using RSS method and
fingerprinting. This software communicates with the access
points in the building to locate an object. First you have to
define paths and trails for the software. Every several meters
you can read the power of different access points in the
building and this will be your database when you walk
through all the routine paths in the building and collect data.
The more data you collect, the more accurate your location
estimation can be. After collecting data, you can locate your
desired object. The location estimation is done based on
fingerprinting method.

The core for Real-Time channel simulation is PROPSim.
Basically the channel simulator works based on the tapped-
delay line method where it can generate different models and
channels between the input and output of the each PROPSim’s
channel. For our purpose, since we had 3 access points we
needed 3 inputs from PROPSim and just one output. Each
channel’s bandwidth is 70 MHz so it is quite enough for RSS
or AOA measurement methods but for TOA method there will
be shortage in our setup system.

We used a 2-D ray tracing software, PlaceTool, developed
at CWINS to simulate the channels as the inputs of PROPSim.
This software yields all of the possible paths between
transmitter and receiver regarding the reflection and
transmission of the walls and the floorplan of the building.

III. PERFORMANCE EVALUATION

The scenario here is the third floor of Atwater Kent
building in WPI University. The experiment was repeated for
different scenarios.

A.  Effects of testbed parameters

In order to evaluate the effects of testbed parameters we
created different scenarios. First we had access point and 3
scenarios regarding the number of points which were used to
train EKAHAU.

The channel responses were provided by PlaceTool Ray
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Figure 3: Mean of error for different access points and
different training points
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Figure 2: Standard deviation of error for different access
points and different training points

Tracing software. After simulation in PROPSim, the power
from the access points fed into EKAHAU software as our
database for fingerprinting. The grid network for location
estimation consisted of 66 points. Similar to this experiment
we trained the EKAHAU with 10 points and 27 points. Then
we increased the number of access points having similar 3
scenarios for training points. Summary of this experiment is in
the following figures.

Figure 4 discusses about the effect of parameters in mean of
distance error. As it can be observed from the figure if you
increase the number of access points the mean of error
generally decreases. Change of the number of training points
also affects the statistics of error. Figure 5 shows us how these
parameters affect the standard deviation of error. As it can be
seen, for the scenarios with 1 access point or 2 access points
the increase in the number of training points increases the
standard deviation. This is contrary to our expectation that an
increase in training point should lead to a decrease in distance
error values. One possible explanation is that with less than
three access points EKAHAU is unable to build an accurate
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Figure 4: CDF of the error for different number of access
points
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Figure 5: schematic of the location of access points for
random deployment experiment

database which leads to substantially larger errors.

As it was expected the number of access points and number
of training points are both important to determine the accuracy
of the system. The more access points we have in the building,
the more accurate the positioning system would be. The effect
of training point is also important. For example with
increasing the number of training points from 4 to 27 we can
halve the error in mean. This will also happen if we increase
the number of access points which means change in the
infrastructure of the WLAN. The sample Cumulative
Distributive Function (CDF) for different experiments has
been shown in figure 6. As it can be noticed from figure 6, by
having 3 access points and enough number of training points
the error would be less than 5 meters with the probability of
0.9 while with 1 access point and the same number of training
points the error is just less 21 meters %90 of the time

B.  Effects of deployment strategy

This subsection focuses on finding the effect of the location
of access points on the accuracy of the system. We defined 3
scenarios with 3 access points in each and we changed the
location of access points for each scenario. The 3
configuration for location of access points is shown in the
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Figure 7: CDF of error for random deployment

figure 7.

Each scenario contains 25 training points and the grid
network for error estimation consisted of 100 points. We tried
to arrange the access points in a manner which an actual user
would arrange for telecommunication purposes. This kind of
installation is the case if we want to use the existing
infrastructure for positioning purposes [6].

So in the first look it can be seen that if you place the
location of access points close to each other the accuracy
degrades. This is mainly because when two access points are
closer to each other, the number of points which may have
similar power profile increases.

The next observation is that a configuration designed for
telecommunication systems might not be suitable for
positioning systems. For example for better coverage we may
prefer to arrange the access points in a straight line, but it is
obvious that this scenario is not appropriate for positioning
systems. As you can see from figure 8, even the best
installation for telecommunication purpose would end up with
3.5 meters error on average in location estimation and even
for the second experiment the mean of error is 8 meters which
is completely not suitable for indoor positioning. The other
remark to be made is that since patterns 1 and 3 has almost the
same access points locations, the CDF of error should be
similar which in figure 8 this similarity is shown.

Figure 9 shows us the mean and standard deviation of error
for this experiment. As we can see pattern 1 and pattern 3
have both close mean and variance. pattern 2 in which
location of access points were close to each other was
considered as the worst case since the average error is 8
meters in pattern 2.

IV. CONCLUSION AND FUTURE WORK

In this experiment it was concluded that there are several
factors that affect the accuracy of location estimation using
RSS method. Increasing the number of training points
enhances the accuracy of estimation. Besides the fact that
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Figure 6: Mean and Standard Deviation of error for three
patterns of random deployment
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number of access points will affect the accuracy, the location
of them is also an important parameter which should be
considered. The relationship between the location of access
points and accuracy of system can be found with further
research.

Future work can be done in terms of channel model
developing which instead of Ray Tracing channel models you
can simply use your own model and see how accurate it works
for indoor geolocation. Another feature which this Testbed is
capable of handling is that you can define the same scenario
for another positioning system and by comparing the results
you are able to say which one is more accurate. Generalization
of this Testbed is that you could be able to simulate the other
methods of positioning rather than fingerprinting. You can
define AOA in PROPSim and consequently you are able to
use AOA methods of positioning. Finally this testbed can
applied to TOA method if a larger bandwidth is used for
channel modeling..
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Abstract—This paper presents an in-depth investigation of
frequency-domain super-resolution time-of-arrival (TOA) estima-
tion with diversity techniques for indoor geolocation applications.
A methodology for performance evaluation of super-resolution
techniques based on the measurements of indoor radio propaga-
tion channels is presented. The performance of super-resolution
techniques is compared with the performance of conventional
TOA estimation techniques. The effects of diversity techniques
on the performance of super-resolution techniques are evaluated.
The measurement and simulation methods presented in this paper
can be used to establish empirical performance bounds for real
implementation of super-resolution indoor geolocation systems.

Index Terms—Channel measurement, diversity techniques, in-
door geolocation, performance evaluation, spectrum estimation,
super-resolution, time-of-arrival (TOA) estimation.

1. INTRODUCTION

ITH THE emergence of location-based applications
Wand next-generation location-aware wireless networks,
location finding techniques are becoming increasingly impor-
tant [1]. Location finding based on time-of-arrival (TOA) is
the most popular method for accurate positioning systems.
The basic problem in TOA-based techniques is to accurately
estimate the propagation delay of the radio signal arriving from
the direct line-of-sight (DLOS) propagation path. However,
in indoor and urban areas, due to severe multipath conditions
and the complexity of the radio propagation, the DLOS cannot
always be accurately detected [2], [3]. Increasing time-domain
resolution of channel response to resolve the DLOS path im-
proves the performance of location finding systems employing
TOA estimation techniques.

Super-resolution techniques have been studied in the field
of spectral estimation [4]. Recently, a number of researchers
have applied super-resolution spectral estimation techniques
for time-domain analysis of different applications. These
applications include electronic devices parameter measurement
[5], [6] and multipath radio propagation studies [7]-[11]. In [7],
the super-resolution technique was employed in the frequency
domain to estimate multipath time dispersion parameters such
as mean excess delay and root-mean-square delay spread.
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A similar method was used in [8] to model indoor radio
propagation channels with parametric harmonic signal models.
Here, we address the application of super-resolution techniques
to accurate TOA estimation for indoor geolocation. In the
literature, the time-delay estimation problem has been studied
with a variety of super-resolution techniques, such as min-
imum-norm [9], root multiple signal classification (MUSIC)
[10], and total least square-estimation of signal parameters via
rotational invariance techniques (TLS-ESPRIT) [11]. While
super-resolution techniques can increase time-domain resolu-
tion, it also increases complexity of system implementation. In
this paper, we present an investigation of frequency-domain
super-resolution TOA estimation techniques for indoor geolo-
cation. We present and evaluate techniques that can be used in
practical implementation to improve the performance of TOA
estimation. To demonstrate usefulness, the performance of
super-resolution techniques is compared with that of two con-
ventional TOA estimation techniques. In addition, two diversity
combining schemes are presented for super-resolution TOA
estimation techniques and the effects of diversity techniques
are evaluated based on these two schemes.

In the literature, the performance of super-resolution tech-
niques for time-domain analysis is typically evaluated either by
computer simulation with simple two-path channel model [9] or
by using specially designed simple circuits [6]. In this paper, the
performance of super-resolution TOA estimation techniques is
studied through computer simulations based on measurements
of indoor radio propagation channels. Due to the complexity of
multipath indoor radio channels, performance analysis based on
experimental channel measurement data reveals much more re-
alistic statistical results than computer simulations with simple
theoretical channel models. Furthermore, as the channel mea-
surement system that we used provides a convenient means for
conducting extensive measurements in indoor areas, the mea-
surement and simulation methods presented in this paper can
be used to conveniently establish empirical performance bounds
for real implementation of super-resolution indoor geolocation
systems.

The rest of the paper is organized as follows. In Section II,
the MUSIC super-resolution algorithm is applied to the fre-
quency-domain channel measurement data for TOA estimation.
Then several issues in practical implementation are addressed in
Section III. Section IV presents diversity techniques that can be
applied to super-resolution TOA estimation. Simulation results
based on measurement data are presented in Section V, which is
followed by conclusions.
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II. SUPER-RESOLUTION TECHNIQUES

The multipath indoor radio propagation channel is normally
modeled as a complex lowpass equivalent impulse response
given by

Lp—1

Z Ozké(t—Tk) (1)

k=0

h(t) =

where L, is the number of multipath components, and a =
|| €?%% and 73, are the complex attenuation and propagation
delay of the kth path, respectively, while the multipath compo-
nents are indexed so that the propagation delays 74, 0 < k <
L, — 1 are in ascending order. As a result, 7y in the model de-
notes the propagation delay of the DLOS path, i.e., the TOA,
which needs to be detected for the purpose of indoor geoloca-
tion. Taking the Fourier transform of (1), the frequency-domain
channel response can be expressed as
L,—1

= > age I )
k=0

The parameters «y and 7j, are random time-variant functions
because of the motion of people and equipment in and around
buildings. However, since the rate of their variations is very slow
as compared with the measurement time interval, these param-
eters can be treated as time-invariant random variables within
one snapshot of measurement [12]. The phase of the complex
attenuation 6, is normally assumed random from one snapshot
to another with a uniform probability density function U (0, 27)
[13]. On the other hand, these parameters are frequency-depen-
dent since they are related to radio signal characteristics such as
transmission and reflection coefficients. However, as shown in
[14], for frequency bands used in this paper, these parameters
can be assumed frequency-independent.

In this paper, we consider super-resolution TOA estimation
based on frequency-domain measurement of indoor channel
response. In practice, discrete samples of frequency-domain
channel response can be obtained by sweeping the channel at
different frequencies [15], by using a multicarrier modulation
technique such as orthogonal frequency-division multiplexing
(OFDM), or in a direct-sequence spread spectrum (DSSS)
system by deconvolving the received signal over the frequency
band of high signal-to-noise ratio [7], [9]-[11].

If we exchange the role of time and frequency variables in
(2), we can observe that it becomes a harmonic signal model

L,—1

= Z e I T 3)

which is well known in spectral estimation field [4]. Conse-
quently, any spectral estimation techniques that are suitable for
the harmonic signal model can be applied to the frequency re-
sponse of multipath indoor radio channel to perform time-do-
main analysis. In this paper, we use the MUSIC algorithm [16],
as an example of super-resolution techniques, in TOA estima-
tion for indoor geolocation applications.

The discrete measurement data are obtained by sampling
channel frequency response H(f) at L equally spaced fre-
quencies. Considering additive white noise in the measurement

process, the sampled discrete frequency-domain channel
response is given by
L,—1
(1) = Y agpem 2 RHADT (1) (4)
k=0
where [ = 0,1,...,L — 1, and w(l) denotes additive white
measurement noise with mean zero and variance o2. We can
then write this signal model in vector form

x=H+w=Va+w (&)

= H(f1) +w(l)
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and the superscript 1" denotes the matrix transpose operation.
The MUSIC super-resolution techniques are based on eigen-

decomposition of the autocorrelation matrix of the preceding

signal model in (5)

R.. = E{xx1} = VAV¥ 4+ 521 (6)

where A = E{aa’} and the superscript H denotes conjugate
transpose operation, i.e., Hermitian, of a matrix. Since the prop-
agation delays 7 in (1) can be theorectically assumed all dif-
ferent, and the matrix V has full column rank, i.e., the column
vectors of V are linearly independent. If we assume the magni-
tude of the parameters «, is constant and the phase is a uniform
random variable in [0, 27], the L,, X L, covariance matrix A is
nonsingular. Then, from the theory of linear algebra, it follows
that assuming L > L,, the rank of the matrix VAV is L,,
or equivalently, the L — L, smallest eigenvalues of R, are all
equal to o2 . The eigenvectors (EVs) corresponding to L — L,
smallest eigenvalues of R, are called noise EVs, while the
EVs corresponding to L, largest eigenvalues are called signal
EVs. Thus, the L-dimensional subspace that contains the signal
vector x can be split into two orthogonal subspaces, known as
signal subspace and noise subspace, by the signal EVs and noise
EVs, respectively. The projection matrix of the noise subspace
is then determined by

w Q w ( Qw w (7)

where Q, = [qr, dr,+1 qL-l] and qx, L, < k <
L — 1 are noise EVs. Since the vector v(73),0 < k < L, — 1
must lie in the signal subspace, we have

P,v(r:) = 0. (8)

Thus, the multipath delays 7, 0 < k < L, — 1 can be de-
termined by finding the delay values at which the following
MUSIC pseudospectrum achieves maximum value:

1 1 1
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Fig. 2. Functional block diagram of the MUSIC super-resolution TOA estimation algorithm.

Fig. 1 shows a functional block diagram of the receiver of
super-resolution TOA estimation systems. The received signal
is first used to estimate channel frequency response. Then, a
super-resolution algorithm is used to transform the channel fre-
quency response to time domain pseudospectrum, as defined in
(9). The estimate of TOA is then obtained by detecting the first
peak of the pseudospectrum in the delay axis using a peak detec-
tion algorithm. In the next section, issues in the practical imple-
mentation of super-resolution TOA estimation techniques will
be presented.

III. ISSUES IN PRACTICAL IMPLEMENTATION

Note that in the analysis, we considered the theoretical or true
correlation matrix R... In practice, the correlation matrix must
be estimated from the measured data samples. Fig. 2 illustrates a
functional block diagram of the MUSIC super-resolution TOA
estimation algorithm. The input data vector, i.e., the estimate of
channel frequency response given in (5), is first used to estimate
the correlation matrix R.... Then, the eigenvalues as well as the
corresponding EVs of the correlation matrix are computed. The
parameter L, is determined through the analysis of the eigen-
values and EVs of the correlation matrix, which is discussed in
details later in this section. Finally, the pseudospectrum is ob-
tained using (9).

If we have P snapshots of measurement data, the estimate of
the correlation matrix is obtained from
1 L
- Z x(F)x (k) H

k=1

Rz = (10)
but if only one snapshot of measurement data of length N is
available, the data sequence is divided into M consecutive seg-
ments of length L and then the correlation matrix is estimated

as

. 1 M-—1
Roo = 5- kZ:O x(k)x(k)" (11)

where N L + 1 and x(k)
[z(k) x(k + L — 1)]7. In this section, we will focus on
the second method, where only one snapshot of measurement

M

data is used in estimating data correlation matrix as in (11).
Methods based on multiple snapshots will be discussed in
Section IV for application with diversity techniques.

As we mentioned earlier, for the super-resolution TOA esti-
mation techniques, the measurement data vector x is obtained
by sampling channel frequency response uniformly over a given
frequency band. In order to avoid aliasing in the time domain,
similar to the time-domain Nyquist sampling theorem, the fre-
quency-domain sampling interval A f is determined to satisfy
the condition 1/Af > 27ya, Where Tyax = max(7z,_1)
is the maximum delay of the measured multipath radio prop-
agation channel. For example, for indoor geolocation applica-
tions, the frequency sampling interval A f is normally set to be
1 MHz, which accommodates application scenarios where the
maximum delay 7,,.x i less than 500 ns or, equivalently, the
maximum length of the multipath signal propagation path is less
than 150 m. Thus, with a bandwidth of 20 MHz, the length of
one measurement data sequence is 21, which is far too short to
accurately estimate the correlation matrix. As we will discuss, a
number of issues arise and a number of techniques can be used
to improve the performance when the estimate of the correla-
tion matrix is used in the implementation of super-resolution
techniques.

A. Improved Estimation of Correlation Matrix With Limited
Measurement Data

The measurement data are assumed to be stationary. Thus,
the correlation matrix of the data is Hermitian (conjugate sym-
metric) and Toeplitz (equal elements along all diagonals). How-
ever, the estimate of the correlation matrix R....., based on the ac-
tual measurement data of small finite length IV, is not Toeplitz.
The estimate of the correlation matrix can be improved using
the following forward—backward correlation matrix (FBCM):
R = %(fim +IR,.J) (12)

rT

where the superscript * denotes conjugate, superscript FB
stands for forward-backward estimation, and J is the L x L
exchange matrix whose components are zero except for ones

on the antidiagonal. It can be easily shown that Rﬁm is

'y = R{P* and its elements
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are conjugate symmetric about both main diagonals. This
technique is widely used in spectral estimation with the name
modified covariance method [4], in linear least-square signal
estimation with the name forward-backward linear predication
[4], and in antenna array signal processing with the name
modified spatial smoothing preprocessing [6], [17]. Here, we
call the correlation matrix in (11) the forward correlation
matrix (FCM) in contrast to the FBCM in (12).

In our development of basic theories, we assumed that the
magnitude of the parameters «, in (1) is constant and the phase
0 is a uniformly distributed random variable so that the cor-
relation matrix A in (6) is full-rank (nonsingular), but if the
phase of «y is nonrandom, which is true if only one snapshot
of measurement data is used in estimating the correlation ma-
trix R,., the rank of the correlation matrix A decreases to
one and the matrix becomes singular. In such a situation, the
MUSIC algorithm does not work properly, but fortunately, for
the signal model (4), the estimation of data correlation matrix
using (11) has decorrelation effects. The decorrelation effects in
forward and forward-backward correlation matrices were ana-
lyzed in [6], [17], and [18]. For the forward estimation method,
following the derivation in [18] for the two-source model, the
correlation coefficient between «; and a’j, i.e., the ¢th and jth
element of a, can be derived as

FoM) Ay
pFOM — __Lid g, (13)
! VAidjj
where
- sinfMrAf(r; — ;)]

M sin[r A f(r; — 75)]
¢ = —(0; —0;) +2rfo(ri — ;) + (M = 1)Af(1; — 75)

and A;; is the (4, j)th element of the parameter correlation ma-
trix A. It is noted that the decorrelation effects of the forward
estimation method depend on the number of segments M, the
frequency sampling interval A f, and time-delay difference (7; —
7;). Similarly, the correlation coefficient of the forward—back-
ward estimation method can be derived as

PR~ Koos (94 5 ) 2 (14)

i
where
¢ =2r(L - 1Af(r; — ;)

which depends, in addition, on the length of the segments L,
phase difference of parameters (§; — 6;), and the lowest fre-
quency of the spectrum fj. Detailed derivations of (13) and (14)
can be found in the Appendix. From
P
cos (g/) + 5

we can clearly observe that FBCM has better decorrelation
effects than the FCM. Fig. 3 shows examples of the decorre-
lation effects versus the number of segments calculated from
(13) and (14), respectively. Later in this paper, we compare the
performance of the forward and forward-backward estimation
methods by computer simulations.
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Fig.3. Correlation coefficients of FCM and FBCM, with A f = 1 MHz, (7; —
7;) = 1518, (8; — 8;) = 0, fo = 900 MHz, and L = 13.

B. Determination of Parameters L and L,

If we use only one measurement data snapshot of length NV
points to estimate the TOA, the first step is to determine the
value of L for estimation of lf{m as in (11). With large values of
L, the potential for higher resolution of the MUSIC algorithm
increases, which is similar to that in array signal processing
where increasing L means an increase in subarray aperture and,
thus, an increase in resolution capability [19], [20]. On the other
hand, from (11), we can see that for a fixed value of IV, the value
of M decreases as L increases. The decrease in M increases
fluctuations in the matrix R, resulting in large perturbations
of the eigenvalues and EVs of R.;.., and reduces the number of
coherent oy, that can be detected [20], [21]. Consequently, the
value of L needs to be selected so that it provides a balance be-
tween resolution and stability of the algorithm. Different values
of L have been used in the literature; for example, [22] used
N/2 and N/3, [19] used 3N /4, and [9] adopted 3N/5. In this
paper, we use a value of 2V/3, which was determined through
computer simulations.

Another parameter that needs to be determined in using a
super-resolution technique is the number of multipath compo-
nents L, If the true correlation matrix R, is available, L, can
be easily determined by observing eigenvalues of the correla-
tion matrix since in theory, the L — L,, smallest eigenvalues of
R, are all equal to o2, and the remaining L,, eigenvalues are
all larger than o2, but in practical implementation, especially
when the correlation matrix is estimated from a limited number
of data samples, the noise eigenvalues are all different, which
makes it challenging to clearly distinguish signal eigenvalues
and noise eigenvalues. In [23], the information theoretic criteria
for model selection, including Akaike information theoretic cri-
teria and Rissanen minimum descriptive length criteria (MDL),
are applied to this problem. The MDL criterion for estimation
of L, is used in this paper, which is given as [23]

M(L—k
ave-» v

i=k

1
MDL(k) = —log + k(2L =) log M

(16)
95



228 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 1, JANUARY 2004

where \;, 0 < ¢ < L — 1 are the eigenvalues of correlation
matrix in descending order. The estimate of L,, is determined as
the value of & € [0, L — 1] for which the MDL is minimized.
In [24], Xu et al. showed that when the forward—backward esti-
mation method is used, the MDL criteria in (16) cannot directly
apply and the second term of the criteria must be modified to
(1/4)k(2L — k + 1) log M.

C. EV Method

One implicit assumption in the MUSIC method is that the
noise eigenvalues are all equal, i.e., \y = o2 for L, <k<
L — 1, that is, the noise is white. However, as we just discussed,
when the correlation matrix is estimated from a limited number
of data samples in practice, the noise eigenvalues are not equal.
A slight variation on the MUSIC algorithm, known as the EV
method, can be used to account for the potentially different noise
eigenvalues [4], [25]. The pseudospectrum of the EV algorithm
is defined as

1

Sev(T) = (17)

=y m
> alag vim))?

" — P

where Ay, L, < k < L — 1 are the noise eigenvalues. In ef-
fect, the pseudospectrum of each EV is normalized by its corre-
sponding eigenvalue. If the noise eigenvalues are equal, the EV
method and the MUSIC method are identical. The performance
of the MUSIC and EV methods were compared in [25], and it
was shown that the EV method is less sensitive to inaccurate es-
timate of the parameter L,, which is highly desirable in a prac-
tical implementation. As presented later in this paper, the EV
method is shown by computer simulations to have slightly better
performance than the MUSIC method. In Section IV, we investi-
gate diversity techniques that can be used to further improve the
performance of super-resolution TOA estimation techniques.

IV. DIVERSITY TECHNIQUES

Diversity techniques such as time diversity, space diversity,
and frequency diversity are widely utilized in wireless commu-
nication systems to improve link performance [1], [13], [26].
Diversity techniques take advantage of the random nature of the
radio propagation channel by finding and combining uncorre-
lated signal paths. In essence, all diversity techniques used for
wireless communication systems can be used for TOA estima-
tion systems with the general structure shown in Fig. 4, where
the diversity system has P branches. The TOA is estimated inde-
pendently at each diversity branch of receiver, and then a com-
bining algorithm is used to process the TOA estimates from all
branches to obtain an optimum estimate. A variety of different
combining algorithms can be designed for different diversity
techniques. The simplest one is the equal-gain combining al-
gorithm given by

1L

. (k

fo=5 7. (18)
k=1

In some cases, more complex variable-gain combining is

also possible, where the estimate of each diversity branch
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Fig. 4. General structure of TOA estimation with diversity techniques.
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Fig. 5. Estimation of correlation matrix with diversity techniques for

super-resolution TOA estimation, correlation matrix based diversity combining
scheme (CMDCS).

is weighted with a coefficient that reflects the quality of
time-delay estimation at each branch. More research work is
needed to design optimum combining algorithms for diversity
techniques.

For the super-resolution TOA estimation techniques pre-
sented in this paper, diversity techniques can also be applied, as
shown in Fig. 5. Instead of combining independent time-delay
estimates as in Fig. 4, the measurement data at diversity
branches are combined to estimate the correlation matrix using
(10). For the convenience of referencing, we call the structure
in Fig. 4(a) the general diversity combing scheme (GDCS),
and the structure in Fig. 5(a), the correlation matrix-based
diversity combing scheme (CMDCS). In super-resolution TOA
estimation techniques, the major computational load is in the
eigen analysis, i.e., computing eigenvalues and EVs, of the
correlation matrix. As a result, CMDCS is computationally
superior to GDCS since the CMDCS scheme performs eigen
analysis only once, but the GDCS scheme needs to perform
independent eigen analysis P times.

On the other hand, by applying the CMDCS scheme, the un-
derlying assumption concerning the radio propagation channel
is that the amplitude attenuation and time delay for each path,
and the number of signal paths are the same from the trans-
mitter to all diversity branches of the receiver. This restricts
CMDCS to only quasistationary scenarios, where the channel
remains unchanged while the P diversity measurement data are
collected. This is one disadvantage of the CMDCS scheme as
compared with the GDCS scheme, which has no such restric-
tion in application. This condition for applicability also makes it
challenging to use CMDCS for space diversity since in space-di-
versity situations, the radio propagation channel from the trans-
mitter to diversity branches of the receiver are most likely not
the same. Similarly, CMDCS is not suitable for time diversity.
As we discussed in Section III, the super-resolution technique
cannot work properly when the phase of each signal path re-
mains unchanged together with the amplitude attenuation and
time delay for each path, and the number of signal paths. For
quasistationary scenarios, it is unknown whether the phase is
random or not for repeated measurements while the number of
signal paths and the amplitude attenuation and time delay for
each path all remain unchanged, but simulation results utilizing
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measurement data collected on indoor radio channels, which
will be presented in Section V, show that time-diversity with
CMDCS yield almost no improvement over nondiversity tech-
niques. In contrast, frequency-diversity can be well fitted into
CMDCS. By using frequency-diversity, the kth measurement
data vector x(*), 1 < k < P are obtained using kth carrier fre-
quency. A quantitative relationship between the improvement of
TOA estimation accuracy and frequency diversity is not known,
but the effects of frequency diversity can be conveniently an-
alyzed using the correlation coefficients similar to the way by
which we analyzed the forward—backward correlation method.

For frequency diversity, if the carrier frequency fo is uni-
formly distributed

AF
:)

where f. is center frequency, and AF is the range of the fre-
quency distribution, the correlation coefficient between o and
a’; can be derived as

AF
5 19)

fONU<fc_—7fc+

D) _ SINTAL(T = 7)) ji(6,—6,)-2 (rr,)]
K TAF(1; — 1)

(20)

where the superscript FD stands for frequency diversity. Sim-
ilarly, if the frequency diversity method is used for the FCM,
then the correlation coefficient becomes

oy = K e
where
K- KSin(ﬂ'AF(Ti - 75))

’NAF(Ti —Tj)
(f)l = — (HL — Hj) + 27I'fc(7'i — Tj) +7r(M — l)Af(T,L' — Tj)

and that for FBCM becomes

prCM’FD) = K’ cos (qﬁ' + %) eIV/2, (22)
We notice that by using the frequency diversity method, the
coherence between multipath components is decorrelated ac-
cording to the sinc finction as AF and absolute value of delay
difference (7; — 7;) increase. Fig. 6 shows correlation coeffi-
cients of forward and forward—backward correlation matrices
with frequency diversity, calculated from (21) and (22), using
the same parameters as in Fig. 3. We can clearly observe that
the frequency diversity technique further improves the decorre-
lation effects in both forward and forward—backward correlation
matrices. Details of the derivations of (20)—(22) are presented in
the Appendix.

V. SIMULATION RESULTS BASED ON MEASUREMENT DATA

In this section, we further investigate the performance of
super-resolution and diversity techniques by means of com-
puter simulations based on the measured frequency response
of indoor radio propagation channels. The frequency response
of the indoor radio channel can be measured with a network
analyzer, as reported in [15] and [27]. The main component of
our measurement system is a network analyzer that generates
a swept frequency signal and analyzes the resulting received
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Fig. 6. Correlation coefficients of FCM and FBCM with and without
frequency diversity, with Af = 1 MHz, (r; — 7;) = 15 ns, (8; — 6;) = 0,
fe = 1GHz, L = 13,and AF = 100 MHz.

signal. The measurement data reported in [28], collected
using a network analyzer, is used in this paper to evaluate the
performance of super-resolution TOA estimation techniques.
Magnitude and phase measurements of radio channels were
performed at center frequency 1 GHz with bandwidth of
200 MHz. The measurements were conducted at three different
buildings that represent highly likely places for deployment
of indoor geolocation systems, including a manufacturing
building at the Norton Company, Worcester, MA, a modern
academic building, the Fuller Laboratory at Worcester Poly-
technic Institute, Worcester, MA, and a residential house, the
Schussler House at Worcester Polytechnic Institute. Thirty
locations were selected at each site for measurement at places
where indoor geolocation systems will be likely used. Four
consecutive snapshots of the radio channel were taken at
each receiver location while preventing movement around the
vicinity of the antennas of transmitter and receiver. During the
measurement, a transmitter was fixed at one location while a
receiver was moved around. The measurement locations were
distributed so as to include indoor-to-indoor, outdoor-to-indoor,
and outdoor-to-second floor radio propagation conditions. For
each measurement location, the physical distance between the
antennas of transmitter and receiver were determined either
directly or from the blueprint of building floorplans. After the
measurement, the frequency domain measurement data were
calibrated to remove the effects of system and antenna gains
and delays [15].

The signal bandwidth is one of the key factors affecting the
accuracy of TOA estimation in multipath propagation environ-
ments [3]. To study the performance of TOA estimation using
signals of various bandwidths, in the simulations, we use only
a segment of each frequency domain measurement data to re-
flect the band-limitation effects. For example, with a 1-MHz
frequency-domain sampling interval, a data segment of 21 sam-
ples, centered at 1 GHz, of each measurement data is used in
simulations for a bandwidth of 20 MHz. 97
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Fig. 7. Mean and STD of ranging errors using different techniques. The
vertical line corresponds to plus and minus one STD about the mean.

A. Performance of Super-Resolution Techniques

As we mentioned earlier, the EV method is a variant of the
MUSIC method and it is preferred when the correlation matrix
is estimated from a limited number of data samples. To com-
pare the performance of EV and MUSIC methods, both algo-
rithms are applied to the measured data with forward—backward
estimation of the correlation matrix. Fig. 7 presents the mean
and standard deviation (STD) of the ranging errors versus signal
bandwidth. To clearly relate the results to geolocation applica-
tions, time delay 7 is converted to distance d by the relationship
d = ¢ x 7, where ¢ = 3 x 10® m/s is the constant speed of
light in free space. We can observe that both mean and STD of
the ranging errors decrease as the bandwidth increases. The EV
method (i.e., EV/FBCM) has slightly better performance than
the MUSIC (i.e., MUSIC/FBCM) for low signal bandwidth in
terms of smaller STD of ranging errors. As a result, in the fol-
lowing, we use the EV algorithm for further investigation.

We analyzed FCM-based and FBCM-based super-resolution
TOA estimation techniques through the decorrelation effects in
the estimated correlation matrix. Since there is no analytical way
to quantitatively relate the improvement in the accuracy of TOA
estimation to the method of correlation matrix estimation, we
compare the two methods using statistical simulation results.
Fig. 7 also presents simulation results for the EV algorithm
with FCM. Comparing EV/FBCM and EV/FCM, it is clear that
the FBCM-based method performs better than the FCM-based
method in terms of smaller mean and STD of ranging errors,
which is consistent with the analytical analysis. It is also noted
that both techniques have similar performance when the signal
bandwidth is large, e.g., bandwidth larger than 120 MHz.

B. Comparison of Super-Resolution and Conventional
Techniques

In order to demonstrate the usefulness of the super-resolu-
tion technique, we compare its performance with two conven-
tional time-delay estimation techniques. In the first of the other
two techniques, the frequency-domain channel response is con-
verted directly to time domain using the inverse Fourier trans-
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Fig. 8. Estimated TOA of the DLOS path and normalized time-domain
responses obtained using three different techniques. The vertical dashed—dotted
line denotes the expected TOA.

form (IFT), and then, propagation delay of the DLOS is de-
tected. When the time-domain response over part of the time
period is desired, the chirp-z transform (CZT) is preferred, pro-
viding flexibility in the choice of time-domain parameters with
the cost of longer computational time as compared with IFFT
(inverse fast Fourier transform) [29]. The time-domain reso-
lution with CZT is the same as with the IFFT. On the other
hand, a proper window function is needed to avoid leakage and
false peaks by reducing the sidelobes of the time-domain re-
sponse, which result from finite bandwidth, with the cost of re-
duced time-domain resolution. In our simulations, we employ
CZT with the Hanning window to convert frequency channel
response to the time domain.

The second technique uses the traditional cross-correlation
techniques with DSSS signals (DSSS/xcorr). To simulate
DSSS signal-based cross-correlation technique using measured
frequency channel response data, frequency response of a
raised-cosine pulse with rolloff factor 0.25 is first applied to
the frequency channel response as a combined response of
band-limitation pulse-shaping filters of the transmitter and
receiver. Then, the resultant frequency response is converted to
the time domain using the IFT for TOA estimation.

Fig. 8 shows normalized time-domain responses obtained
from simulations of the three techniques using a sample
channel measurement data. We observe that the super-reso-
lution technique shows much higher time-domain resolution
than the other two, and it accurately detects the delay of the
DLOS path while the other two fail. Fig. 9(a) presents mean
and STD of ranging errors versus the bandwidth of the system.
Fig. 9(b) presents probabilities of measurement locations
where absolute ranging errors are smaller than 3 m. In general,
the super-resolution technique has the best performance and
it is preferred, especially when the signal bandwidth is small.
It should be noted that, as shown in the simulation results,
while using super-resolution technique and larger bandwidth
can improve the statistical performance of TOA estimation, it
cannot eliminate large estimation errors at some locations. This
is because of the possibility of no-LOS propagation (NLOS)
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Fig. 9. Simulation results. (a) Mean of ranging errors using three different
TOA estimation techniques. The vertical line corresponds to one STD.
(b) Percentages of measurement locations where absolute ranging errors are
smaller than 3 m.

condition between the transmitter and the receiver. Such a
condition needs to be dealt with in the positioning process to
achieve high positional accuracy in a geolocation system [3].

C. Effects of Time Diversity

Here, we study the effects of time diversity with the two
diversity combining schemes, i.e., GDCS and CMDCS, that
we discussed in Section IV. Time diversity is simulated by
running simulations using the four measurements of each
location, collected consecutively while stopping movement
in the vicinity of the transmitter and the receiver antennas
during the measurement. This represents the situation in which
the system is used for quasistationary applications with four
time-diversity branches. Fig. 10 presents simulation results for
the EV/FBCM method with two diversity-combining schemes,
ie.,, EV/IFBCM/TD4-CMDCS and EV/FBCM/TD-GDCS.
Simulation results for the EV/IFBCM method without time
diversity are also shown in the figure as a reference for com-
parison. From the results, we can observe that there is almost
no difference between the performances of the CMDCS-based
method and the nondiversity method while the GDCS-based

: A EVIFBCM
T -« - EVIFBCM/TD4-CMDCS
_e&- EVIFBCM/TD-GDCS

Mean of ranging errors (m)
N

1 L L I L
0 20 40 60 80 100 120 140 160 180
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Fig. 10. Mean and STD of ranging errors with time diversity.

method has clearly better performance in terms of smaller STD
of ranging errors. This verifies our earlier comment that the
CMDCS is not suitable for time-diversity systems. In contrast,
GDCS can be used in time-diversity systems to improve the
system statistical performance to some extent.

D. Effects of Frequency Diversity

The use of frequency diversity is simulated by running
simulations based on segments of data samples that are
obtained by dividing each measurement data sequence of
frequency channel response into a number of equally spaced
segments. Since the measurement data at each location are
of 200-MHz bandwidth, to avoid overlapping among diver-
sity segments, the effect of frequency diversity is evaluated
only for a bandwidth of 20 MHz. It should be noted that in
real implementation, overlapping segments can be used for
frequency diversity. In our simulations, the overlapping is
avoided in order to avoid correlation between measurement
noises in the overlapping segments since the segments are
obtained from one measurement. Four equally spaced seg-
ments are first used for each measurement data sequence to
compare frequency and time-diversity techniques using the
same number of diversity branches. Both GDCS and CMDCS
schemes are used for EV/FBCM (i.e., EV/IFBCM/FD4-GDCS
and EV/FBCM/FD4-CMDCS), and the results are compared
with that of EV/FBCM and EV/FBCM/TD-GDCS, as shown
in Fig. 11(a). The cumulative distribution function (CDF) is
used for comparison. From the figure, we note that all three
diversity techniques perform better than the nondiversity
EV/FBCM method and frequency diversity with CMDCS
has the best performance. In order to examine the effects of
the number of diversity branches, we increase the number of
diversity branches to ten, which is the maximum number of
segments that we can achieve from 200-MHz measurement
data without overlapping segments. Then, in Fig. 11(b),
the simulation results of GDCS and CMDCS schemes with
ten diversity branches (i.e., EV/FBCM/FD10-GDCS and
EV/FBCM/FD10-CMDCS) are compared with that of nondi-
versity EV/FBCM and frequency diversity with four diversity
branches, i.e., EV/FBCM/FD4-CMDCS, which has the best
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performance in Fig. 11(a). From the results, it is clear that
EV/FBCM/FD10-CMDCS has the best performance and even
the EV/IFBCM/FD4-CMDCS has slightly better performance
than EV/FBCM/FD10-GDCS, though it has a smaller number
of diversity branches. Consequently, we can conclude that fre-
quency diversity can further improve the ranging performance
and for frequency diversity, the CMDCS scheme is preferred
to the GDCS.

VI. CONCLUSION

In this paper, we have applied super-resolution spectral
estimation techniques to the measured channel frequency
response to accurately estimate TOA for indoor geolocation
applications. Our results show that super-resolution techniques
can significantly improve the performance of TOA estimation
as compared with conventional techniques including direct IFT
and DSSS signal-based cross-correlation techniques. We have
shown that a number of techniques are able to further improve
the performance of super-resolution techniques, including the
EV method, forward—backward estimation of correlation ma-
trix, time diversity, and frequency diversity. For time diversity,

the general diversity combining scheme is preferred while for
frequency diversity, the correlation matrix-based scheme is
preferred. Another important factor that affects the performance
of TOA estimation is signal bandwidth. For all techniques the
performance improves as signal bandwidth increases. On the
other hand, as bandwidth increases, there is less difference in
performance between different techniques. Also, it should be
noted that due to the possibility of the NLOS condition between
transmitter and receiver, using super-resolution techniques and
large bandwidth cannot eliminate large ranging errors at some
locations.

APPENDIX

The parameter correlation matrix is defined in (6) as
A = E{aa®}. (AD)

Thus, using the forward estimation method, the (¢, 7)th ele-
ment of the correlation matrix A can be obtained as

. I 1%

1 N
= M (aie_JQW(f0+kAf)Ti) X (aje_ﬂ”(fo+kAf)qu.)*
k=0
1 M-1
:Maia;e_j%rfo(n—ﬁ) Z e_j27TkAf(Ti—Tj)
k=0
— e~ i2rMAf(ri—T;)
:ia'a*fe_jzﬂfo(ﬂ—rj)l e Jem T —Tj
M ] 1-— e_jQWAf(Tq_Tj)

— aia’;eﬂ%fo (‘rif‘rj)efjw(lﬂfl)Af(Tiij)

sin[MrAf(r; — 7;)]

M sin[r A f(r; — 7)) (A2)

and it easily follows that
Aii = o ? (A3)
where «; = |a;|e?% . From the definition of the correlation

coefficient between the ith and jth parameters, defined as in
[18], we can obtain that

(FCM) — L — Ke 99 Ad
where K and ¢ are defined in (13).
The FBCM is defined in (12)
. 1 - ok
R{EY = o (Res +JR,,J) (A3)

N Ak
where R, and JR__J are forward and backward correlation
matrices, respectively. The backward correlation matrix can be
equivalently calculated using (11) with the data vector

x=[z(L-1) z(L-2) z(0)]%  (A6)
so that the element of the parameter vector a in (5) becomes
ay = azejZ‘rr(foHL—l)Af)n.. (A7)

Thus, using the backward estimation method, the (7, 7)th ele-
ment of the parameter correlation matrix can be obtained as
(A8), shown at the top of the page, where A;; is given by (A2).
Then, the (¢, )th element of the parameter correlation matrix
using the forward—backward estimation method can be obtained
as

A % (Aij + A,Ef)) . (A9)
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Finally, the correlation coefficient between the sth and jth pa- REFERENCES

rameters can determined by

FB
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where v is given in (14).

For frequency diversity, we assume the carrier frequency is
uniformly distributed as given in (19). The elements of the pa-
rameter correlation matrix are derived as follows:

(A10)

(FD) _ *
A =E{aja]}
| [ftAF/2 o)
=— a;ate 17T df
AF ./fC—AF/Z !
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and the correlation coefficient is easily obtained
A(FD)
p(FD) _ g
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_ S(TAF(Ti = 7)) jicoi-0,)-2m s (ri )
T AF (1, — ;) '
(A12)

The correlation coefficients of forward and forward-back-
ward estimation methods, given in (21) and (22), are easily ob-
tained by noticing that

(FCM,FD) _ { (FCM)}
ij
Z(jlf‘BCM,FD) { (FBCM)} (A13)

where the statistical expectation E{-} is performed with respect
to the uniformly distributed carrier frequency.

ACKNOWLEDGMENT

The authors would like to thank members of the CWINS
at WPI, who have contributed in various ways to this work.
In particular, they would like to thank Dr. J. Beneat and
Dr. P. Krishnamurthy, for their work in building the database
of channel measurements that were used in this paper, and
Dr. A. Levesque and Dr. R. Tingley, for their comprehensive
reviews that have greatly improved the manuscript.

(1]
(2]

(4]
(51

(6]

(71

(8]

(91

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

K. Pahlavan and P. Krishnamurthy, Principles of Wireless Networks—.
Unified Approach. Englewood Cliffs, NJ: Prentice-Hall, 2002.

K. Pahlavan, P. Krishnamurthy, and J. Beneat, “Wideband radio prop-
agation modeling for indoor geolocation applications,” IEEE Commun.
Mag., vol. 36, pp. 60-65, Apr. 1998.

K. Pahlavan, X. Li, and J. Makela, “Indoor geolocation science and tech-
nology,” IEEE Commun. Mag., vol. 40, pp. 112-118, Feb. 2002.

D. Manolakis, V. Ingle, and S. Kogon, Statistical and Adaptive Signal
Processing. New York: McGraw-Hill, 2000.

W. Beyene, “Improving time-domain measurements with a network an-
alyzer using a robust rational interpolation technique,” IEEE Trans. Mi-
crowave Theory Tech., vol. 49, pp. 500-508, Mar. 2001.

H. Yamada, M. Ohmiya, Y. Ogawa, and K. Itoh, “Superresolution tech-
niques for time-domain measurements with a network analyzer,” IEEE
Trans. Antennas Propagat., vol. 39, pp. 177-183, Feb. 1991.

T. Lo, J. Litva, and H. Leung, “A new approach for estimating indoor
radio propagation characteristics,” IEEE Trans. Antennas Propagat.,
vol. 42, pp. 1369-1376, Oct. 1994.

G. Morrison and M. Fattouche, “Super-resolution modeling of the in-
door radio propagation channel,” IEEE Trans. Veh. Technol., vol. 47,
pp. 649-657, May 1998.

M. Pallas and G. Jourdain, “Active high resolution time delay estima-
tion for large BT signals,” IEEE Trans. Signal Processing, vol. 39, pp.
781-788, Apr. 1991.

L. Dumont, M. Fattouche, and G. Morrison, “Super-resolution of mul-
tipath channels in a spread spectrum location system,” Electron. Lett.,
vol. 30, pp. 1583-1584, Sept. 1994.

H. Saarnisaari, “TLS-ESPRIT in a time delay estimation,”
47th VIC, 1997, pp. 1619-1623.

Saleh and R. Valenzuela, “A statistical model for indoor multipath prop-
agation,” IEEE J. Select. Areas Commun., vol. SAC-5, pp. 128—137, Feb.
1987.

K. Pahlavan and A. Levesque, Wireless Information Networks.
York: Wiley, 1995.

G. Yang, “Performance evaluation of high speed wireless data systems
using a 3D ray tracing algorithm,” Ph.D. dissertation, Worcester Poly-
tech. Inst., Worcester, MA, 1994.

S. Howard and K. Pahlavan, “Measurement and analysis of the indoor
radio channel in the frequency domain,” IEEE Trans. Instrum. Meas.,
vol. 39, pp. 751-755, Oct. 1990.

R. Schmidt, “A signal subspace approach to multiple emitter location
and spectral estimation,” Ph.D. dissertation, Stanford Univ., Stanford,
CA, 1981.

R. Williams, S. Prasad, A. Mahalanabis, and L. Sibul, “An improved
spatial smoothing technique for bearing estimation in a multipath envi-
ronment,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp.
425-432, Apr. 1988.

V. Reddy, A. Paulraj, and T. Kailath, “Performance analysis of the op-
timum beamformer in the presence of correlated sources and its be-
havior under spatial smoothing,” IEEE Trans. Acoust., Speech, Signal
Processing, vol. ASSP-35, pp. 927-936, July 1987.

D. Tufts and R. Kumaresan, “Estimation of frequencies of multiple si-
nusoids: Making linear prediction perform like maximum likelihood,”
Proc. IEEE, vol. 70, pp. 975-989, Sept. 1982.

H. Krim and M. Viberg, “Two decades of array signal processing re-
search,” IEEFE Signal Processing Mag., vol. 13, pp. 67-94, July 1996.

101

in Proc. IEEE

New



234 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 3, NO. 1, JANUARY 2004

[21] J. Liberti and T. Rappaport, Smart Antennas for Wireless Communica-
tions: 1S-95 and Third Generation CDMA Applications. Englewood
Cliffs, NJ: Prentice-Hall, 1999.

S. Lang and J. Mclellan, “Frequency estimation with maximum entropy

spectral estimators,” IEEE Trans. Acoust., Speech, Signal Processing,

vol. ASSP-28, pp. 716724, Dec. 1980.

[23] M. Wax and T. Kailath, “Detection of signals by information theo-

retic criteria,” IEEE Trans. Acoust., Speech, Signal Processing, vol.

ASSP-33, pp. 387-392, Apr. 1985.

G. Xu, R. Roy, and T. Kailath, “Detection of number of sources

via exploitation of centro-symmetry property,” IEEE Trans. Signal

Processing, vol. 42, pp. 102-112, Jan. 1994.

[25] D.Johnson and S. DeGraaf, “Improving the resolution of bearing in pas-
sive sonar arrays by eigenvalue analysis,” IEEE Trans. Acoust., Speech,
Signal Processing, vol. ASSP-30, pp. 638-647, Aug. 1982.

[26] T. Rappaport, Wireless Communications Principles and Prac-

tice. Englewood Cliffs, NJ: Prentice-Hall, 1996.

S. Howard and K. Pahlavan, “Autoregressive modeling of wide-band in-

door radio propagation,” IEEE Trans. Commun., vol. 40, pp. 1540-1552,

Sept. 1992.

[28] J. Beneat, K. Pahlavan, and P. Krishnamurthy, “Radio channel charac-
terization for geolocation at 1 GHz, 500 GHz, 90 MHz and 60 MHz in
SUO/SAS,” in Proc. IEEE MILCOM, 1999, pp. 1060-1063.

[29] B. Ulriksson, “Conversion of frequency-domain data to the time do-
main,” Proc. IEEE, vol. 74, pp. 74-76, Jan. 1986.

[22]

[24]

[27]

Xinrong Li (S°00) received the B.E. degree from
the University of Science and Technology of China,
Hefei, China, in 1995 and the M.E. degree from
the National University of Singapore, in 1999. He
is currently pursuing the Ph.D. degree in wireless
communications and networks at the Worcester
Polytechnic Institute (WPI), Worcester, MA.

From 1995 to 1997, he was a System Engineer
at the Shenyang Institute of Automation, Chinese
Academy of Sciences, Shenyang, China. Since 1999,
he has been working as a Research Assistant at the
Center for Wireless Information Network Studies, WPI, on various research
projects sponsored by Nokia, TEKES, Sonera, United Technologies Research
Center, and the National Science Foundation. During the summer of 2002, he
worked on system capacity and performance measurement and analysis of 3G
all-IP CDMA2000 1xEV-DO Network Infrastructure Systems at Airvana, Inc.,
Chelmsford, MA. His research interests include statistical signal processing,
indoor geolocation, performance analysis of wireless communication and
network systems, and measurement and modeling of indoor radio propagation
channels.

Kaveh Pahlavan (M’79-SM’88-F’96) is a Pro-
fessor of Electrical and Computer Engineering, a
Professor of Computer Science, and Director of the
Center for Wireless Information Network Studies,
Worcester Polytechnic Institute, Worcester, MA.
He is also a Visiting Professor of the Telecommu-
nication Laboratory and the Centre for Wireless
Communications (CWC), University of Oulu, Oulu,
Finland. His area of research is broadband wireless
indoor networks. He has contributed to numerous
seminal technical publications in this field. He is
the principal author (with A. Levesque) of the Wireless Information Networks
(New York: Wiley, 1995) and (with P. Krishnamurthy) Principles of Wireless
Networks—A Unified Approach (Englewood Cliffs, NJ: Prentice-Hall, 2002).
He has been a consultant to a number of companies including CNR Inc, GTE
Laboratories, Steinbrecher Co., Simplex, Mercury Computers, WINDATA,
SieraComm, 3COM, and Codex/Motorola in MA; JPL, Savi Technologies,
RadioLAN in CA; Aironet in OH; United Technology Research Center in
CT; Honeywell in AZ; Nokia, LK-Products, Elektrobit, TEKES, and Finnish
Academy in Finland; and NTT in Japan. Before joining WPI, he was the
Director of Advanced Development at Infinite Inc., Andover, MA, working
on data communications. He started his career as an Assistant Professor at
Northeastern University, Boston, MA.

He is the Editor-in-Chief of the International Journal on Wireless Information
Networks. He was the Founder, Program Chairman, and Organizer of the IEEE
Wireless LAN Workshop, Worcester, MA, in 1991 and 1996, and the Organizer
and Technical Program Chairman of the IEEE International Symposium on Per-
sonal, Indoor, and Mobile Radio Communications (PIMRC), Boston, MA, in
1992 and 1998. He was selected as a member of the Committee on Evolution
of Untethered Communication, U.S. National Research Council, in 1997 and
has led the U.S. review team for the Finnish Research and Development Pro-
grams in Electronic and Telecommunication, in 1999. For his contributions to
the wireless networks, he was the Westin Hadden Professor of Electrical and
Computer Engineering at Worcester Polytechnic Institute from 1993 to 1996
and become a fellow of Nokia in 1999. From May of 2000, he was the first
Fulbright-Nokia scholar at the University of Oulu. Because of his inspiring vi-
sionary publications and his international conference activities for the growth
of the wireless LAN industry, he is referred to as one of the founding fathers of
the wireless LAN industry. Details of his contributions to this field are available
at www.cwins.wpi.edu.

102



1449

Indoor Geolocation using OFDM Signals in HIPERLAN/2 Wireless LANs

Xinrong Li and Kaveh Pahlavan

Center for Wireless Information Network Studies

Worcester Polytechnic Institute, USA
{xinrong, kaveh} @ece.wpi.edu

ABSTRACT

With the finalization of new series of IEEE 802.11 and
ETSI HIPERLAN standards, it becomes very important
and interesting to study the methods to integrate
geolocation functionalities into the next generation
wireless LANSs. In this paper we investigate geolocation
methods and system architectures using OFDM signals
in HIPERLAN/2 wireless LANs. We propose a novel
method to measure geolocation metrics by exploiting the
HIPERLAN/2 MAC frame structure. Computer
simulation results are presented to show the performance
of the geolocation systems using OFDM signals.

I. INTRODUCTION

Providing geolocation services and integrating context
awareness is becoming one of the future trends of
wireless data communication systems. As a result of
FCC ruling concerning the enhanced wireless E911
services, considerable interests have been attracted to
geolocation techniques. Similar to the geolocation
applications in cellular systems, there are increasing
needs in indoor environments (e.g. hospital, warehouse
and emergency site) to locate expensive equipments or
people (e.g. patients, children, firefighters, soldiers and
policemen) [1][2]. These incentives have led to research
in designing accurate geolocation systems in indoor
environment where the severe muilti-path radio
propagation and lack of line-of-sight signal makes it very
difficult for traditional GPS systems and cellular
geolocation systems to provide adequate accuracy.

Geolocation information can be extracted either from a
dedicated infrastructure and signaling system (e.g. GPS
systems) or from an existing infrastructure and signaling
system designed for wireless voice or data
communications (e.g. providing geolocation services
within existing cellular systems) [2]. Compared to the
method of using dedicated systems, extracting
geolocation information from existing signaling systems
is more challenging. However, exploiting existing
infrastructures and signaling system for geolocation
purpose is more attractive because by using this method,
geolocation related services can be easily integrated into
existing wireless communication systems without
significant changes in both mobile terminals and network
infrastructures. With the finalization of new series of
IEEE 802.11 and ETSI BRAN HIPERLAN standards,
new features are being integrated into the next
generation wireless LANs and it becomes very important

0-7803-6465-5/00 $10.00 © 2000 IEEE
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and interesting to study the methods to integrate
geolocation functionality into wireless LANS.

During the past decade, geolocation methods in DSSS
(Direct Sequence Spread Spectrum) systems have been
well studied. The autocorrelation properties of PN
sequences make DSSS systems very suitable for ranging
and geolocation applications. More recently, OFDM has
been adopted by ETSI HIPERLAN/2 and IEEE 802.11a
as physical layer standard for next generation wireless
LANs. However, no similar studies of using OFDM
systems for geolocation applications have been reported
in the literature. In this paper, we investigate
geolocation methods and system architectures using
OFDM signals in HIPERLAN/2 wireless LANs. We
propose a novel method to measure geolocation metrics
TOA (Time of Arrival) and TDOA (Time Difference of
Arrival) by exploiting the HIPERLAN/2Z MAC frame
structure.

The paper is organized as follows. In Section 2, we
review those aspects of HIPERLAN/2 standards that are
relevant to geolocation considerations. Then in the
following section, we investigate geolocation methods
and architectures in HIPERLAN/2 wireless LANs. In
Section 4, we present a burst synchronization method in
HIPERLAN/2 OFDM systems that can be used to extract
geolocation metrics from OFDM signals. In Section 5,
simulation results are presented to show the performance
of OFDM based geolocation systems.

II. REVIEW OF HIPERLAN/2

The HIPERLAN is a collective reference to High
Performance Radio Local Area Networks standards
developed or been developing by ETSI (European
Telecommunications Standards Institute) project BRAN
(Broadband Radio Access Networks) [4][5]. The
HIPERLAN/2 network operates in 5 GHz band, and it
supports short-range broadband wireless access, 30m in
typical indoor environment and up to 150m in typical
outdoor or large open indoor environment.

A HIPERLAN/2 network typically has a configuration as
shown in Figure 1. A number of Access Points (AP),
each of which covers a certain area, are connected to a
core network and form together a radio access network.
The mobile terminal (MT) associates with one of the
APs and communicate with the associated AP over the
radio channel. Handoff between APs will be performed
for the roaming MTs when necessary. HIPERLAN/2
defines two basic operation modes, the mandatory
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Centralized Mode and the optional Direct Mode. In the
Centralized Mode, APs are connected to a core network
that serves MTs associated to it. All traffic must pass
through AP even if the data exchange is between two
MTs in the same serving area of the AP. In the optional
Direct Mode, the medium access is still controlled by a
central controller but this controller needs not necessarily
be connected to a core network. The MTs may
communicate directly between each other. In a
HIPERLAN/2 network, data transmission between MT
and AP is connection-oriented. There are two types of
connections,  bi-directional  point-to-point  and
unidirectional point-to-multipoint (from AP to MT). The
connections between MTs and AP, which are time-
division multiplexed over the air interface, are
established prior to the transmission using signaling
functions.

Fixed Network
(1P, Ethernet, ATM, UMTS and etc)
‘ \8

Point

A

Mobile Terminal

Centralized ~ Access

Mode Centralized
Mode

Direct Mode

Mobite Terminal
Mobile Terminal

Figure 1: The HIPERLAN/2 network.

HIPERLAN/2 protocol has three basic layers: Physical
(PHY) layer, Data Link Control (DLC) layer, and
Convergence layer (CL). The PHY layer defines basic
data transmission functions via radio channel. The DLC
layer consists of Medium Access Control (MAC)
function, Error Control (EC) function and Radio Link
Control (RLC) function. The Convergence layer works
as an intermediate component between the DLC layer
and a variety of fixed networks, e.g. IP, Ethernet, ATM,
UMTS and etc., to which HIPERLAN/2 network is
connected.

PHY burst [ Preamble [ Payload

oo |

OFDM Symbol | cP l Data
E3

; Copy :
M————— 4.0 5 or3.6 g5 (optional) ————P

Figure 2: HIPERLANY/2 physical layer burst format
with OFDM signaling.

The PHY layer of HIPERLAN/2 is based on a
multicarrier modulation scheme OFDM (Orthogonal
Frequency Division Multiplexing). The basic idea of the
OFDM is to divide a wideband selective channel into a
number of independent narrowband sub-channels so that
the narrowband sub-channels can be viewed as non-
selective or flat fading. OFDM can be efficiently
implemented using FFT (Fast Fourier Transform) and
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IFFT (Inverse FFT) at the receiver and the transmitter
respectively. In such a scheme, to avoid inter-symbol-
interference (ISI) and to combat multipath effects, a
cyclic prefix (CP), which is a copy of the ending part of
OFDM symbol, is added at the beginning of each symbol
as temporal guard interval as illustrated in Figure 2. As
shown in Figure 2, the basic signal format on the PHY
layer is a RF burst started with a preamble that is
followed by a payload data part. Five different types of
PHY bursts are defined with different burst preamble
formats to distinguish between each other: Broadcast
Burst, Downlink Burst, Uplink Burst with Short
Preamble, Uplink Burst with Long Preamble and Direct
Mode Burst.

€— 2ms —p
MAC frame [ MAC frame l MAC frame J

BCH I FCH ] ACH1 DL phase

UL phase l RCHSJ

DiL phase

Figure 3: MAC frame structure for HIPERLAN/2.

The Data Link Control layer constitutes the logical link
between AP and MTs. The functional entities in DLC
layer are Medium Access Control function, Error
Control function and Radio Link Control function. In
HIPERLAN/2, the MAC protocol is based upon a
dynamic TDMA/TDD scheme with centralized control.
The Basic MAC frame structure is shown in Figure 3.
The duration of each MAC frame is 2ms. Each MAC
frame consists of transport channels BCH (Broadcast
Channel), FCH (Frame Channel), ACH (Access
Feedback Channel), a DL (Down-Link) and UL (Up-
Link) phase, and one or many RCHs (Random Channel).
A DiL (Direct Link) phase is also contained between DL
phase and UL phase if Direct Mode is used. The
duration of the BCH is fixed while the duration of the
FCH, DL phase, DiL phase, UL phase and the number of
RCHs are dynamically adapted by the AP according to
the current traffic condition. The BCH (downlink only)
contains control information that reaches all the MTs. It
provides information about transmission power levels,
starting point and length of the FCH and RCH, wake-up
indicator, and identifiers for identifying both the
HIPERLANY/2 network and the AP. The FCH (downlink
only) contains an exact description of how the DL phase,
UL phase and RCH are configured in the current MAC
frame. The ACH (downlink only) contains information
on previous access attempts made in the RCH. The DL
and UL phase (bi-directional) is for the traffic of PDU
(Protocol Data Unit) trains to and from the MTs
respectively. The RCH (uplink only) is used by the MTs
to request transmission resources for the DL or UL phase
in upcoming MAC frames, and to convey some RLC
signaling messages. Collisions may occur in RCH and
the results from RCH access will be reported to MTs in
ACH.
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II1. HIPERLAN/2 GEOLOCATION METHODS
AND ARCHITECTURES

As we noted in the last section, HIPERLAN/2 MAC
protocol is based upon dynamic TDMA/TDD scheme
with centralized control. Each MAC frame of fixed
length (2ms) is divided into a number of transport
channels of varying length. The MAC frame
synchronization between AP and MTs is established with
the aid of physical layer Broadcast Burst that is
transmitted at the beginning of transport channel BCH
(i.e. the beginning of each MAC frame). The starting
time points of other transport channels are determined
with time offset from the starting point of MAC frame
and are known to both AP and mobile terminals. These
features of MAC frame structure can be exploited in
measuring geolocation metrics TOA and TDOA from
OFDM burst signals. In this section, we examine
different geolocation methods in light of different
geolocation architectures in HIPERLAN/2 wireless
LANSs.

fo ]
AP & 7g P 27 —»l ]MAC Frame
N
. top ho i
MT = e 7o 1
A
Starting time of
Uplink Burst from MT

Figure 4: AP-based TOA geolocation method.

Geolocation system architectures can be roughly
grouped into two categories, mobile-based and network-
based architectures. In both cases, more than three
Geolocation Base Stations (GBS) are needed to
geometrically locate MT using multiple TOA/TDOA
measurements [2]. In mobile-based architecture, MT
extracts geolocation metrics from received radio signals
that are transmitted by GBSs. The location information
can be relayed to a Geolocation Control Station (GCS) if
necessary. In network-based architecture, GBS
measures radio signals transmitted by MT and then GBS
or GCS extracts geolocation metrics from the
measurements. The selection of geolocation system
architecture depends on where the geolocation
information is needed, i.e. in MT or in GCS, and some
other implementation considerations in specific
application scenarios. In this paper, we only focus on
geolocation methods for network-based architecture.
The functionality of GBS can be either implemented in
AP or in a separate Geolocation Reference Point (GRP).
The selection of implementation methods between AP-
based and GRP-based approaches also depends on the
specific application scenarios and implementation
considerations. For example, in some application
scenarios, only one AP is available and thus we need a
few separate GRPs operating around AP to provide
geolcoation services. As we will discuss later in this
section, different approach requires different geolocation

methods and results in different signaling requirements
in HIPERLAN/2 networks.

In AP-based architecture, TOA from MT to AP can be
measured basing on round-trip time of flight as
illustrated in Figure 4, where #; and f; are the times
(measured at AP) of transmitting Broadcast Burst and
receiving Uplink Burst from MT respectively, while ¢y,
and fyy are the times (measured at MT) of receiving
Broadcast Burst from AP and transmitting Uplink Burst
respectively. The delay 7, is the offset of UL phase
within the MAC frame, which is known to both MT and
AP, and the delay g is the TOA to be measured. The
request for location services can be initiated either from
GCS, which is connected to the network through wired
or wireless connection, or from MT through AP (or
GCS). AP assigns UL phase in current MAC frame to
the target MT and the MT sends a signal within UL
phase. The MT determines the starting time #y, of
current MAC frame by measuring the receiving time of
the Broadcast Burst from AP, and AP determines f#; by
measuring the receiving time of the Uplink Burst from
the MT. Since the delay 7}, is known to both AP and

MT, the TOA from MT to AP can be calculated at AP as
follows:

foo=%[(f1~fo)-flo]- m

To perform geolocation function at GCS, TOA
measurements from MT to at least three APs are
required. But it should be noted that to measure TOA
from MT to multiple APs, forced handoffs are needed to
associate MT to different APs, which requires significant
coverage overlap between adjacent APs. This is the
major drawback of AP-based geolocation method.

lo
AP j MAC Frame

GRP1 | 70 | ™ ——:T[ J

~
i P
GRP2 | 1m0 | a1 -] J
: < 2 —J
MT Too k- 70y~ I
A
Starting time of
Direct Mode Burst from MT

Figure 5: GRP-based TDOA geolocation method.

If the functionality of GBS is implemented in a separate
Geolocation Reference Point (GRP) instead of in AP,
TDOA method can be used as illustrated in Figure 5,
where f; is the starting time of a MAC frame at AP
while #; and ¢, are the times of receiving Direct Mode
Burst at GRP1 and GRP2 respectively. The delay 7 is

the offset of DiL phase within MAC frame; delays g,
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730 and 7py are transmission delays from AP to MT,

GRP1 and GRP2 respectively. In this method, after the
request for geolocation services is initiated by MT or
GCS, AP assigns the optional Dil. phase in the current
MAC frame to the MT and the MT transmits a Direct
Mode Burst within the DiL phase. Then GRP measures
the recetving time of the Direct Mode Burst from the
MT. The TOAs from AP to GRPs 7y, and 7, can be
accurately estimated at GCS since the distances between
each GRP and AP are known. Consequently, the TDOA
from MT to GRP1 and GRP2 can be calculated as
follows:
TDOAZl =77~ 7}
=[(z30 +721) = (200 + 0]
~l(z10 +711) = (200 +701)]
= (79 +721) = (710 + 711)

Using this method, GCS acts as a master that collects
measurements of receiving time of Direct Mode Burst
from multiple GRPs and calculates TDOAs as well as
estimating position of MT basing on TDOAs. As a
result, after measuring receiving time of Direct Mode
Burst, GRPs have to request a UL phase to report the
measurement to GCS. Using the GRP-based TDOA

method, only one AP is needed to perform geolocation
function and no forced handoff between APs are needed.

@

IV. BURST SYNCHRONIZATION METHODS IN
HIPERLAN/2 OFDM SYSTEMS

Using the geolocation methods discussed in the
preceding section, we need to determine the receiving
time of physical layer burst signals at MT and AP (or
GRP) that is also known as symbol timing
synchronization. Symbol timing for OFDM signals is
very different from that of a single carrier signals
because no eye-opening point, which is the best
sampling time, can be found [6]. In this section, we
present burst synchronization methods in HIPERLAN/2
OFDM systems that can be used for geolocation purpose.

e—— 2L
OFDM symbol CP Data

—»

e— L —>e— L —>

identical

First symbol
of Broadcast Burst

Figure 6:
preamble.

Training symbol in HIPERLAN/2 burst

In burst transmission mode, receiver must continuously
scan for incoming data and the symbol synchronization
time is required to be as short as possible. In
HIPERLAN/2, the burst preamble consists of special
training symbols that are used to accomplish the timing
synchronization and frequency offset correction within
the duration of several OFDM symbols. The first

symbol in the Broadcast Burst preamble consists of two
identical parts in the time domain as illustrated in Figure
6. The timing synchronization can be performed by
searching for the training symbol with two identical
halves. A timing metric M is formed by performing
sliding correlation of two consecutive parts of the
received signal r(k) (each of which has a length of L)

as follows [6]:

| P
M(d)= > 3)
[R(@))?
where
L-1
P(d)=Y 7' (d+m) r(d+m+L)
n “)
Rd)= Y |r(d+m+L)}
m=0

and * denotes complex conjugate operation. Figure 7
shows the timing metric output of the sliding correlation
described above where the first vertical line indicates the
starting point of the first symbol and the last vertical line
is the starting point of the second symbol. Our
simulation results show that this timing synchronization
method works well in AWGN channel and an
exponential channel that will be described in the next
section. Statistical results of the timing metric obtained
from our simulations (which are omitted here due to lack
of space) also closely match the theoretical results
presented in [6].

Timing metric
o
o

0 20 40 60 80 100 120 140 160 180
time index in samples.

Figure 7: Timing metric without noise.

V. SIMULATION RESULTS

To study the performance of geolocation systems,
ranging accuracy must be obtained first. Then the-
ranging accuracy can be mapped into positioning
accuracy by simulations or by statistical methods. We
obtained statistical results of timing errors from
computer simulations using the timing synchronization
method presented in the preceding section. Parameters
for computer simulations are summarized in Table 1. A
raised-cosine lowpass filter is used to take account of
band-limitation condition that has impacts on the
accuracy of timing synchronization. At the receiver an
up-sampling rate of 10 is used, which is needed to make
adequately high resolution in delay/distance estimation.
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Two channel models are used in our simulations, AWGN
channel and frequency selective channel with an
exponential power delay profiles as described in [6].
AWGN channel is used to show the performance in a
benign channel while the exponential channe] represents
a more realistic environment. For the frequency
selective channel, 5 paths are chosen with path delays of
0, 2, 4, 6, and 8 samples, where sampling rate is 20MHz,
so that the channel impulse response is shorter than the
guard interval. The amplitude of each path is calculated
from the exponential distribution:

A; = exp(-;/8) )
where 4; is the amplitude of the ith path and 7; is the

delay of the ith path in samples. The phase of each path
is chosen from a uniform distribution from 0 to 27 .

Table 1: Parameter values for HIPERLAN/2 OFDM
transceiver simulations.

PARAMETER . VALUE
Number of OFDM sub-carriers 52
Sub-carrier frequency spacing 0.3125 MHz
Sampling rate 20MHz
Samples per symbol 80
Samples in cyclic prefix 16
Raised-cosine lowpass filter T =1/(20MHz), =0.25
Up-sampling rate at receiver 10

Figure 8 shows simulation results of timing errors for the
two aforementioned channel models. We can observe
that compared to the AWGN channel, the mean and
standard deviation of timing errors became worse for
exponential channel. Since the sampling period at the
receiver is T, =5ns (with up-sampling rate 10), one

sample timing error maps to 1.5m ranging error. As a
result, the mean of ranging errors remains around 3m for
AWGN channel and 7.5m for exponential channel when
signal-to-noise ratio is greater than 9dB. The timing
synchronization method used in our simulations is pretty
simple since only one OFDM training symbol is used.
Some other timing methods are needed to further
improve the accuracy in real multi-path indoor
environment.

VI. CONCLUSIONS

In this paper we presented indoor geolocation methods
and system architectures for HIPERLAN/2 wireless
LANs. A novel method is proposed to measure TOA
and TDOA from OFDM signal by exploiting MAC
frame structure in HIPERLAN/2 wireless LANs. A
symbol timing synchronization method is used to obtain
the statistical results of timing errors that were mapped
into ranging accuracies. The simple timing method used
in this paper can result in a mean ranging errors around
7.5m in the exponential channel. Other timing methods
have to be combined to further improve the performance.
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