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ABSTRACT 

Designing a precise and reliable localization system for wireless 

capsule endoscopy (WCE) has always been a challenging problem 

due to the complicated in-body environment and uncontrollable 

movement of body tissue. Knowing the motion information of the 

capsule would greatly enhance the localization accuracy. However, 

design and validate any motion tracking algorithm inside small 

intestine faces a lot of difficulties since any experimentation on 

the human being is extremely costly and restricted by law. Having 

a virtual environment that looks and functions exactly like small 

intestine would facilitate the process of verifying the performance 

of existing algorithms without going into the real human body. In 

this paper, we established a virtual testbed that emulates the 

contraction of intestinal lumen and the transition of endoscopic 

capsule. Under this emulation environment, a velocity estimation 

algorithm based on a feature detection algorithm (ASIFT) and a 

velocity estimation algorithm (MDR) was implemented and its 

performances were evaluated. Experimental results showed that 

our proposed emulation environment is able to provide reliable 

platform for motion detection validation. 
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1. INTRODUCTION 
Body Area Networks (BAN) is expected to be the next 

breakthrough for medical applications due to its great potential in 

minimizing implanted wireless communication devices [1-2]. 

Among those small devices, wireless endoscopic capsule (as 

shown in Figure 1) is one of the most innovative inventions since it 

can provide a noninvasive way to examine the human's digestive 

system [3]. However, this technology is unable to localize itself 

when an abnormality is found by the wireless camera.  Having a 

precise and reliable localization system for the wireless capsule 

would greatly enhance the benefits of WCE by allowing doctors 

administrating immediate therapic operations [4].  

 

 

 

 

 

 

During the past few years, many attempts have been made to 

developing accurate localization systems for the WCE. Kaveh 

Pahlavan and his colleagues used Time of Arrival (TOA) and 

Received Signal Strength (RSS) based techniques for RF 

localization inside human tissue [5]. Chao Hu and his research 

group developed a linear algorithm for tracing magnet position by 

using magnetic sensors [6]. However, to utilize image source to 

track the position of WCE is still understudied and has a great 

potential to enhance the accuracy of existing localization 

infrastructures by data fusion. In our previous work [7], we 

developed a novel image processing based motion tracking 

algorithm for the WCE and explore the potential of combining 

the movement of the wireless capsule with existing RF 

localization infrastructure to enhance the in-body localization 

accuracy [8]. Another research group [9] reported methods for fast 

interpretation, motion tracking and velocity estimation of the 

capsule based on endoscopic images. Many other methods using 

endoscopic images have been reported. 

However, validation of these motion tracking algorithms are very 

challenging since any experimentation inside human being is 

extremely difficult due to the unpredictable movement of body 

tissue and individual difference. Once the wireless capsule is 

ingested by a patient and passes through the gastrointestinal (GI) 

tract, there is no mechanism to control the capsule’s speed or 

direction as it traverses the GI tract [10-11]. It is also particularly 

difficult to measure the capsule’s location or orientation during its 

traversal within the human body [12-13]. Plus carrying our 

experiments on real human beings is extremely costly and 

restricted by law [14-15]. Thus, an alternative way to do algorithm 

validation is to build up an emulation testbed.  

 

Figure 1. Wireless endoscopic capsule. It is a pill-shaped 

capsule with built-in video camera, light-emitting diodes, 

video signal transmitter and battery [9]. There are also other 

sizes of capsule used in clinic [16]. 
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To simulate the visual effect inside a human small intestine, most 

researchers assumed the small intestine was static and with no 

contraction. Hence an easy way to develop a testbed of small 

intestine was to create a virtual straight tube with a certain radius 

and features mapped inside the tube. Then a virtual camera was 

set to move along the tube with a certain movement speed and 

perhaps with a certain rotation velocity. But the reality is that the 

small intestine is bent with complicated shape. The capsule would 

experience many types of motion inside small intestine such as 

translation, tilt, and rotation in a three-dimensional space.  

The essential of an endoscopy testbed is to provide realistic 

endoscopic images for algorithm validation. To this end, we 

designed a test system that looked extremely similar with human 

intestinal endoscopic environment and then we developed a 

velocity estimation algorithm to analyze the performance of our 

test system. First we built a physical model of a piece of small 

intestine with PVC tube. Then the physical model was measured 

and mapped into computer. Matlab computer vision toolbox was 

used to generate and visualize the virtual model. Second, we put 

a wired camera and a virtual camera inside the physical and 

virtual model respectively, and got the consecutive endoscopic 

images. After this we added more details on the virtual model 

such as intestinal contraction. Then we implemented a velocity 

estimation algorithm based on Affine Scale-Invariant Feature 

Transform (ASIFT) algorithm [17] and Model of Deformable 

Rings (MDR) algorithm [9] to analyze the performance of our test 

system. Experimental data was then achieved to assist our further 

research and other research on endoscopic image processing 

technique. 

The major contribution of this paper is that we built a systematic 

intestinal endoscopy test environment for algorithm validation. 

We built both physical and virtual testbeds and used a velocity 

estimation algorithm to evaluate the performance of the testbeds. 

Another contribution is that we analyzed the effect of intestinal 

contraction on a velocity estimation algorithm. 

The rest of the paper is organized as follows: In section 2, we 

describe in detail the setup process of testbeds. In section 3, we 

introduce the methodology of developing a velocity estimation 

algorithm. In section 4, we give the results of analyzing the 

performance of testbeds using our proposed method. Finally in 

section 5, we talk about conclusion and future works. 

2. ALTERNATIVES FOR EMULATING 

SMALL INTESTINE 
It is very difficult to verify the performance of an endoscopic 

image processing algorithm, because doing experiments on human 

body is costly and restricted, and because of limitation of control 

of the capsule. Thus a testbed becomes practically useful for 

algorithm validation. In this section we talk about setup of 

intestinal environment in detail.  

2.1 Physical Testbed Setup 
One way to simulate the environment of a small intestine is to 

build a physical model. According to clinical pictures, we built a 

physical testbed whose appearance is shown in Figure 2 (a). It was 

created by bending and twisting a 1.5 meter long 3 centimeter 

diametric Polyvinyl Chloride (PVC) tube. The outer surface of the 

tube was painted flesh color to give it a more realistic interior 

look. A layer of tinfoil paper was covered around the tube to 

prevent outer light from transmitted into the tube and to prevent 

the light of camera from escaping outside.   

Clinical data showed that the average length of a human small 

intestine was 7-9 meters long and the capsule stayed in the small 

intestine for about 3-4 hours. During the few hours when the 

capsule was in the small intestine, it took pictures at 2 frames / 

second. If we assume the capsule travels at a constant speed, then 

the average step distance between two consecutive frames could 

be roughly calculated as 0.03 cm. To simulate the transition of the 

endoscopic capsule, we inserted a wired endoscopy camera 

equipped with four LED lights into the tube with a constant step 

of 0.03 cm and took a picture after each step. In the endoscopic 

pictures, the tube surface that lied physically closer to the camera 

had a brighter intensity value. The brightness decreased as the 

distance increased and finally at the far end of the tube, which was 

corresponding to the center of the endoscopic pictures, a black 

hole would form. If the camera was about to tilt, the black hole 

would move toward to the edge of the endoscopic pictures. Figure 

3 (a) indicates a test pictures take from inside the physical testbed. 

We can see that it is extremely similar with real pictures taken 

from small intestine. 

One advantage of the physical testbed was that it is intuitional. It 

provided realistic endoscopic images for postprocessing. Another 

big advantage was that we can put the whole physical model into 

liquid to simulate the whole intestinal environment, not only 

inside, but also outside and around the body area. In this way, we 

could also add an antenna on the camera, measure the measure 

propagation characteristic of wireless BAN (WBAN) channel [18], 

and analyze its influence on endoscopic images. 

However, there were still several drawbacks of a physical testbed:  

 A big drawback was its restriction in camera control. 

After the camera was inserted into the tube, the only 

possible movement of the camera was along the tube 

with linear proceeding distance, rather than tilt and 

rotation.  

 Besides, to emulate the complicated shape (especially the 

sharp turn) of the small intestine was very difficult 

because there was barely a kind of materials could be as 

smooth and soft as small intestine and had similar 

toughness at the same time. And the camera would get 

stuck at the corner.  

 Plus adding features on the physical model to make it 

exactly the same as small intestine was also unpractical. 

Hence an alternative way to emulate the inside 

environment of the small intestine was to build a virtual 

testbed which will be introduced in the next subsection. 

 
(a)                           (b)                           (c) 

Figure 2 Emulation testbeds. (a) shows the inside and out 

appearance of physical testbed, as well as coordinates 

definition; (b) shows the corresponding virtual testbed. 



 

Figure 3. Left column reflects the interior apperance of 

intestine models; right column reflects the exterior 

appearance of intestine models.  (a) A straight cylinder with a 

constant diameter representing a piece of small intestine; (b) 

represents a piece of small intestine with intestinal contraction. 

2.2 Emulation of a Virtual Testbed 
We built a virtual testbed by creating a cylindrical tube using 

Matlab graphics and computer vision toolbox. To compare the 

virtual testbed with physical testbed, we measured the axis of the 

physical testbed (Figure 3) and used it to create a bent virtual 

cylinder (Figure 3 (a)). A piece of texture image that was 

extracted from the real endoscopic images was mapped inside the 

cylinder to make it more realistic. 

In this 3D space, a virtual camera was placed inside the virtual 

model. The camera’s position was set at the axis of the cylinder 

and the camera’s target was set at the axis of the cylinder with a 

certain distance to the camera’s position, which was to emulate 

the movement of the camera inside the physical testbed as shown 

in Figure 3 (b). Also a Phong point light source was set at the 

camera’s position to simulate the illumination effect. 

The advantages of using a virtual testbed are as follows: 

 It has better camera control, more realistic interior 

texture, and quicker processing time, compared with a 

physical testbed.  

 It can be distorted into any kinds of shape like a real 

small intestine. 

Anatomy results show that a human small intestine is compressed 

in the lower abdomen. The intestinal tissue allows itself to bend 

into different kinds of shapes and at the same time to maintain its 

toughness and elasticity. Moreover, intestinal motility is also an 

important factor that should be considered when simulating the 

virtual environment of small intestine. Clinical data shows that the 

average diameter of small intestine is 2-3 cm. When it is 

contracted, the diameter can be as small as 7 mm which is smaller 

than the diameter of the wireless endoscopic capsule [19]. The 

average frequency of intestinal contraction is 9-10 min-1 

consistent with localization, which means during several hour 

transition of a wireless capsule, it may come across a few dozen 

times of contraction.  Thus it is necessary to study the possible 

influence of intestinal contraction on the endoscopic images 

captured by a wireless capsule. 

The field of view of a wireless capsule can be as large as 156o, so 

objects around the capsule, not only those in front of the capsule, 

take up a large space in the endoscopic images. Because of limited 

light strength, there would form a black hole approximately in the 

center of the images. Objects which are relatively far from the 

capsule have little influence on the images, including a possible 

contraction. Therefore, to simplify the problem, we assume the 

walls of small intestine are stick to the front cover of the capsule, 

which is shown in Figure 3 (b). Since the front cover of the 

wireless endoscopic capsule is semispherical, we used the shape 

of the cover to generate a same virtual model to represent a piece 

small intestine with contraction.  

3. IMPLEMENTATION OF MOTION 

DETECTION ALGORITHM ON VIRTUAL 

ENVIRONMENT 
Velocity estimation based on endoscopic images is a hot research 

topic especially since the early 21st century, when wireless 

endoscopic capsules were invented and practically used in clinic. 

During the past few years, there have been some attempts to 

estimate the velocity of the endoscopic capsule. Usually velocity 

estimation based on endoscopic images consists of two steps. First 

some feature points are detected in two consecutive images. Then 

the displacement of the feature points (which is relatively the 

displacement of the capsule) is calculated based on geometry 

analysis. The displacement will then be divided by the elapsed 

time for deducing the velocity. We talk about these two steps one 

by one. 

3.1 Feature Point Detection 
The purpose of feature point detection is to track the 

transformations such as translation, rotation, and scaling between 

images, which reflects the motion of the camera. It is important 

that the feature points extracted from the reference image can be 

accurately detected in the second image. According to the 

literature, in the WCE application, more feature points can be 

detected by the affine SIFT algorithm then other algorithms [18]. 

Therefore we choose affine SIFT to do feature point detection. 

The distance between a feature point and the capsule is very 

important for velocity estimation. When taking account into 

intestinal contraction, it is more important for researchers to 

understand how the contraction influences the movement of 

feature points in an endoscopic image. Since the capsule is 

surrounded by the walls of small intestine, these walls are 

projected to the 2-D image plane as a bunch of circular rings 

(Figure 4). Under this image acquisition system, the points that 

are closer to the capsule lie on circles with a larger radius 

compared to the points that are farther down the intestine. 

Therefore to better study the influence of intestinal contraction, 

we use basic idea of MDR algorithm to generate a bunch of rings 

with a certain amount of nodes in the endoscopic images, as 

shown in Figure 5 (a).  

 
Figure 4. Feature point projection. L refers to the lens of the 

capsule. V indicates the closest view that can be captured by 

the camera, forming the angle of view α. P1 and P2 refers to 

two feature points, forming two angular depths 1 and 2 

respectively. rs is the radius of the tube. r1 and r2  are the 

distances between P1 and P2 to the center of the image.  



           
(a)                                                    (b) 

Figure 5. Structure of MDR. In (b), red circles reflect the 

structure (theoretical) in the next point of time. 

Every node is assigned a pair of index to, p = 1, 2, 3, …, P, and q 

= 1, 2, 3, …, Q, where p indicates the ring number and q indicates 

the amount of nodes in each ring. We use the following equation 

to transform the indexes into Cartesian coordinates: 
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where     ,      are a pair of Cartesian coordinates of a node,   is 

the radius of the smallest ring,   is the ratio of the radius of two 

adjacent rings. 

Now we regard these nodes as feature points and use affine SIFT 
algorithm to detect the positions of the feature points in the next 
image. Nodes are connected as the same topology as before, as 
shown in Figure 5 (b). As seen in the picture, as the virtual camera 
move forward along the tube, all the nodes moved outward 

resulting in a larger radius of each ring.  

3.2 Displacement Estimation 
The velocity of the wireless capsule can be estimated by 
measuring the displacement of the feature points.  As shown in 
Figure 4 and Figure 5, feature points (nodes) that are in the same 
ring have the similar displacements outward if the capsule is 
moving straightly forward. Thus we measure the displacements of 
the feature points in different groups each of which consists of 
feature points in one ring. After averaged, each ring gives an 
estimate showing the reflecting the displacement of the capsule. 
We use Figure 6 to illustrate the procedure of estimating 
displacement of the capsule by measuring the estimate of each 
ring.  

 

Figure 6. Procedure of estimating displacement. (a) reflects 

the situation where the intestine is with a constant diameter. 

(b) reflects the situation where the intestine is contracted and 

stick to the surface of the capsule’s front cover, which means 

the distance between a feature point and the camera’s lens 

approximate s the radius of the capsule’s front cover. 

In Figure 6 (a), L refers to the initial position of the capsule and L’ 
refers to the position after the capsule moves forward for a 
distance of D. During this process, the projection of a feature 
point P moves from P1 to P2, forming two angles 1 and 2. 
According to our previous analysis, the displacement D can be 

calculated by the equation (2). 
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Figure 6 (b) reflects the situation where the intestine is contracted 

and stick to the front cover of the capsule. In this scenario, as the 

capsule moves, the distance between the feature point and the lens 

of the capsule stays the same, yet still forming two angles 1 and 

2. Plug in the expressions of 1 and 2, the displacement D can be 

calculated by equation (3). 

                                                   

1 and 2 can be calculated by equation (4), according to Figure6. 
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Finally the velocity of the capsule can be deduced as follows: 

  
 

  
                                                      

One of the biggest influences of intestinal contraction on velocity 

estimation algorithm is that objects in different regions of 

endoscopic images moves in different modes, compared to that 

without contraction. In next section, we give the test estimation 

results of both situations. 

4. USING VIRTUAL ENVIRONMENT FOR 

PERFORMANCE EVALUATION  
Two groups of experiments were respectively conducted in two 

kinds of situations. In the first situation, the virtual tube was 

straight with a constant radius; in the second situation, the virtual 

tube is straight but the radius was variable.  

4.1 Velocity Estimation in a Straight Tube 

without Contraction 
To verify the performance of our proposed method, we created a 

straight virtual tube and set a virtual camera to move along the 

axis of it, using the same method introduced in section 2. Velocity 

estimation algorithm was implemented with Matlab and used 

under the testbed. The length of the tube was 100 cm, with a 

constant radius of 2 cm. The far end of the tube was covered with 

a black circle. The velocity of the camera’s displacement was set 

to be 0.7 mm/s. During the transition of the camera, it took 

pictures at resolution of 512 x 512 pixels. Field of view was 62o, 

which was the same as that of the wired camera we used in the 

physical testbed. Thus α is 31o. To generate the nodes, we also set 

P = 7, Q = 128, r = 130, w = 1.1. 

Figure 7 shows the results of feature point detection. As expected, 

all the nodes moved outward resulting in a larger radius of each 

ring. Also the structure of the rings was slightly distorted because 

of some error in detection. 

According to our previous analysis, when the tube is straight, the 

estimated displacement of the camera calculated based on 

different rings, should be the same. And the estimation result 

verified this as shown in Figure 9 (a) (red line). The result was 

normalized and average displacement of 7 rings was 1.02. 

Average error is 2%. 



 
(a) (b)  

 
(c)

Figure 9. Displacement estimates in a constant diametrical tube (red line) and a variable diametrical tube (blue line). In (a), the 

estimates in uncontracted situation was very accurate; the estimates in contracted situation was far from the expected value when p 

was small, because in the central region of the endoscopic image the walls of intestine was not stick to the cover and the nodes 

moved slower than outer ones. (b) indicates that the estimates became accurate when the amount of nodes in each ring increased 

and after it reached 8, the estimates were already very accurate and didn’t change much. (c) As the ring number increased, the 

estimate became closer to the expected one. Results were normalized. The expected value of velocity were 1.

We set a constant P = 7 and changed the amount of nodes in each 

ring, Q, and obtained the results shown in Figure 9 (b) (red line). 

It reflects that when Q is bigger than 4, the estimated result 

doesn’t change a lot as Q increases. 

4.2 Velocity Estimation in a Straight Tube 

with Contraction 
In this subsection, we verify of performance of our proposed 

method in a contracted virtual intestine. We built a contracted 

tube based on the method in section 2, as shown in Figure 3 (b). 

From the capsule to the far end, the radius of the tube varied from 

6 mm (which is approximately the radius of the capsule) to 2 mm. 

We set r = 50, w = 1.26. Other parameters were the same as those 

in the previous subsection. 

Feature point detection results are shown in Figure 8. As seen in 

the images, because of contraction, the walls of tube are closer to 

the lens of camera, resulting in a smaller black hole in the center, 

compared to the tube without contraction. Nodes of the rings 

moved a little longer if we compare Figure 8 (b) with 9 (b), which 

was corresponding to our previous analysis. 

Use our proposed method for contraction model to estimate the 

displacement of the virtual camera. The results are as shown in 

Figure 9 (blue line).In Figure 9 (a), because the walls that were 

near to the center of endoscopic images were not stick to the front 

   

(a)                                                  (b) 

Figure 7. Feature point detection with a constant diametrical 

tube. Each node in the rings was regarded as a feature point, 

some of which didn’t have enough “feature” information for 

detection though. For each of these nodes, we set a threshold. 

If the detection result was far away from the original position, 

a real feature point near the node would substitute it for 

feature point detection.  

cover of the capsule, the calculated estimates relatively differed a 

lot from the expected result. Ring no. 5-7, which are 

corresponding to the feature points that far away from the center 

of the images had the relatively accurate estimates. The field of 

view of a real wireless endoscopic capsule can be as large as 156o, 

so our method can still provide accurate estimates of displacement 

of the capsule. 

Furthermore, in most existing velocity estimation algorithm or 

motion detection algorithm the small intestine are all assumed to 

have a constant diameter. Hence we did another group of 

experiments to study that if the small intestine is contracted but 

we don’t know about it, how the contraction would influence the 

estimation or detection results. To this end we used the previous 

model in this subsection and the method in subsection 4.1.  

Parameters were set the same as before. Figure 13 shows the 

results. In this scenario, set the camera is the origin, the included 

angle of Ring No.7 (which is the outer ring) and the axis is about 

30o as shown in Figure 27. At this point, according to geometry, 

the actual displacement D is approximately a quarter of estimated 

displacement D’, which is extremely similar with our result. More 

experiments showed that if the wireless endoscopic capsule has a 

field of view of 62o, the error that is about 4-5 times of the 

estimates should be considered. If the field of view is much larger 

than 62o, the error could be less than 2 times of the estimates. 

Because of the big drawbacks of the endoscopic image processing 

technique, there have been a few attempts to combine the motion 

detection results from endoscopic images with Radio Frequency 

(RF) localization infrastructure [6] to enhance the estimated 

results. 

    
(a)                                                   (b) 

Figure 8. Feature point detection in the scenario with 

contraction. The detection strategy was the same as discussed 

in subsection 4.1, shown in Figure 7.  



5. CONCLUSION AND FUTURE WORKS 
In this paper, we presented a systematic method to design and 

validate the virtual environment for experimentation inside 

small intestine. Using this environment, we analyzed the 

influence of small intestinal contraction on motion detection 

algorithms. Experimental results precisely coincided with 

expectation.  

In the future, we will focus on refining our test system according 

to the clinical data, and explore its potential application on other 

research directions such as localization inside human body. Also 

we will study the possibility to create a more realistic and 

reliable physical testbed and explore the potential to directly use 

the data from the physical testbed for velocity estimation and 

other applications. 
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